TECHNICAL REPORT on the TAGISH LAKE PROJECT

NTS: 104M/8 & 9, 104N/5 & 12 Latitude 59°27'N Longitude 134°15.5'W Atlin Mining Division

For Blind Creek Resources Ltd. 15th Floor, 675 W. Hastings Street Vancouver, BC, Canada, V6B 1N2 Tel. (604) 669-6463; Fax (604) 669-3041

By: Jean Pautler, P.Geo. JP Exploration Services Inc. #103-108 Elliott Street Whitehorse, Yukon Y1A 6C4

effective date July 30, 2010 November 30, 2010

1.0 Executive Summary

The 67,055.9 hectare Tagish Lake Project, NTS map sheets 104M/8 & 9, 104N/5 & 12, is located primarily between Tagish and Atlin Lakes, 15-35 km west of the community of Atlin in northwestern British Columbia. Atlin is approximately 180 km by road southeast of Whitehorse, Yukon Territory. The property is situated in the Atlin Mining Division with a latitude and longitude of 59°27'N, 134°15.5'W. The claims comprising the Tagish Lake Project are registered to Blind Creek Resources Limited of Vancouver, British Columbia.

Two crustal scale sub-parallel, northwest trending faults transect the Tagish Lake Project, the Nahlin Fault Zone in the northeastern property area and the Llewellyn Fault Zone through the Wann River area. The faults are grossly coincident with terrane boundaries. A belt of anomalously high regional gold-arsenic and antimony geochemistry extends the length of the Tagish Lake area, coextensive with the Llewellyn fault.

The Tagish Lake Project is underlain by Carboniferous to Triassic oceanic rocks of the northern Cache Creek Terrane to the east of the Nahlin Fault Zone, Devonian to Permian metamorphic rocks of the Yukon-Tanana Terrane to the west of the Llewellyn Fault Zone and Triassic to Jurassic sedimentary strata of the Whitehorse Trough between the faults. The above lithologies are cut by Late Cretaceous to Tertiary intrusions and intruded by Eocene plugs and dykes and overlain by associated volcanic rocks and basal coarse clastic sedimentary rocks of the Sloko Group.

Potential exists within the Tagish Lake Project for epithermal gold-silver (Engineer Gold Camp), polymetallic vein (Ben-My-Chree), gold quartz vein (potential in Graham Creek area), copper (Whitehorse Copper) and gold skarn (TP in northern Tagish region) deposits, and possible Kuroko-style volcanogenic massive sulphide (Tulsequah Chief) deposits within Yukon-Tanana Terrane and copper-molybdenum-gold porphyry and gold-silver rich Eskay type shallow subaqueous hot spring deposits within the Whitehorse Trough.

Seven Minfile occurrences are documented on the Tagish Lake Project, the Kim (109.7 g/t Ag, 0.7 g/t Au and 4.0% Cu) and Douglas polymetallic vein showings in the southwestern property area, the Kirkland showing and Gleaner prospect covering epithermal veins near the Engineer Mine, the Graham Creek placer and upstream extent in the northern property area, and the Brown polymetallic vein showing and the copper-nickel-platinum-palladium Anyox-Rodeo prospect within the Wann River area.

Exploration by Blind Creek Resources Limited has focused on the Wann River area which straddles the Llewellyn Fault Zone, a system of northwest trending, steeply northeast dipping structures. A 160° trending 800m long by 180m wide corridor with quartz vein mineralization has been identified with Devonian to Triassic Boundary Range biotite-feldspar-quartz schist in the southwest, and a faulted panel of Upper Triassic Stuhini andesite and quartz eye porphyry in the northeast.

Mineralization at the Brown showing within the corridor consists of tetrahedritefreibergite, chalcopyrite, malachite, azurite, molybdenite, pyrite, sphalerite and galena. A sample collected from the Brown adit by the author in 2010, returning 8.6 g/t Au and 420 g/t Ag over 0.3m, confirmed previous results by the British Columbia Geological Survey from a chip sample (assaying 8.6 g/t Au and 315.38 g/t Ag) and verified the presence of significant gold-silver values on the Wann River portion of the Tagish Lake Project.

Results from grab samples from the Wann River area include 263 g/t Au, 1350 g/t Ag, 2.75% Cu, 4.45% Pb and 1.36% Zn hosted by quartz from tailings in the Lum trenches, and 15.9 g/t Au, 440 g/t Ag, and 1.04% Pb from the Newfie, 17.2 g/t Au from the Trail, including 32.9 g/t Au, 1180 g/t Ag and 3.35% Cu and 3.79% Pb from float, and 126 g/t Ag from the River quartz vein showings.

Based on the widespread indications of precious and variable base metal mineralization within a prospective 800m by 180m wide corridor, association with the Llewellyn Fault Zone, lack of overall exposure, and proximity and similarities to the past producing Engineer Mine, a significant exploration program is recommended on the Wann River portion of the Tagish Lake Project. A program consisting of 2,000m of diamond drilling to evaluate the southeastern sector of the corridor, a ground magnetic geophysical survey to aid in geological mapping, and additional prospecting, mapping and sampling is recommended on Wann River with a budget of \$950,000. A budget of \$50,000 is recommended to evaluate the Engineer portion by mapping, prospecting and sampling.

Table of Contents

			Page
1.0		ummary.	
2.0		And Terms of Reference	
		ied Person and Participating Personnel	
		s, Definitions and Units	
		e Documents	
		tions, Restrictions and Assumptions	
		9	
3.0		Other Experts	
4.0		scription And Location	
		on	
		Tenure	
5.0		y, Climate, Local Resources, Infrastructure & Physiography	
		ss, Local Resources and Infrastructure	
	•	ography, Climate and Infrastructure	
6.0		•	
7.0	5	Setting	
	•	nal Geology	
		ed Geology	
8.0		es	
		Sulphidation Epithermal Gold Model	
		netallic Vein Model	
9.0		on	
10.0	•		
		mistry	
		sics	
11.0	U		
12.0		ethod And Approach	
13.0		paration, Analysis And Security	
14.0		ation	
15.0		operties	
16.0		cessing And Metallurgical Testing	
17.0		nd Mineral Reserve Estimates	
18.0		ant Data And Information	
19.0	-	on And Conclusions	
20.0		dations And Budget	
21.0			
22.0		n, Date And Signature	
23.0	Appendices	5	
	• ··· ·		
	Appendix I	Statement of Claims, Tagish Lake Claim Group	

Appendix II Geochemical Procedure

List of Illustrations

		i ugc
Figure 1:	Location Map	3
Figure 2:	Tagish Lake Group Claim Map	5
Figure 3:	Wann River Detail	6
Figure 4:	Edgar – Nelson Lakes LFZ Extension	7
Figure 5:	Mt. Switzer-Benmychree Zone Detail	8
Figure 6:	Torres-Graham-Golden Gate Zone	9
Figure 7:	Engineer Claim Detail	10
Figure 8:	Crown Grants and Deeded Land	11
Figure 9:	Mineral Reserve Location Map	
Figure 10:	Faults and Minfile Locations	
Figure 11:	Regional Geology Map	
Figure 12:	Legend to accompany Regional Geology Map	
Figure 13:	Wann River Geology	
Figure 14:	Rock Samples, 2010 (print on 11X17)	31
Figure 15:	Soil and Till Samples, 2010	33
Figure 16:	Sample Locations, 2009 and Corridor	35
Figure 17:	Uncorrected Magnetometer Survey Contour Map	
Figure 18:	Engineer Detail	

List of Tables

Table 1:	Claim data Wann River area	4
Table 2:	Sample summary Tagish Lake Project	
Table 3:	Significant results Wann River area, 2009	
Table 4:	Significant 2010 sample results	30
Table 5:	Wann River diamond drillhole locations	
Table 6:	Brown Adit sample results	

Page

2.0 INTRODUCTION AND TERMS OF REFERENCE

2.1 Qualified Person and Participating Personnel

Ms. Jean M. Pautler, P.Geo. was commissioned by Mr. J. Frank Callaghan, President and CEO of Blind Creek Resources Limited of Vancouver, British Columbia to examine and evaluate the geology and mineralization on the Tagish Lake Project and to make recommendations for the next phase of exploration work in order to test the economic potential of the property. The report may be used as part of the technical basis for an IPO and listing application to a Canadian stock exchange.

This report includes reviews of the geology, mineralization, past production and exploration history of adjacent areas, and recommends a program of further work to fully evaluate the mineral potential of the Tagish Lake Project.

The report describes the property in accordance with the guidelines specified in National Instrument 43-101 and is based on historical information, field work conducted on, or supervised by, Mr. Nicholas Clive Aspinall, P.Eng. for Blind Creek Resources Limited of Atlin British Columbia during short periods of field work in 2005, 2008, 2009 and 2010 (*Aspinall, 2010*), and an examination and evaluation of the property by the author on July 27, 2010 for Blind Creek Resources Limited of Vancouver, British Columbia, accompanied by Clive Aspinall, P.Eng. Helicopter services to the property were provided by Discovery Helicopters Limited of Atlin, B.C. Figures 2-17 in this report are primarily from Aspinall (2010), prepared by Anke Woodsworth of Terracad GIS Services Limited.

2.2 Terms, Definitions and Units

All costs contained in this report are denominated in Canadian dollars. Distances are primarily reported in metres (m) and km (kilometers) and in feet (ft) when reporting historical data. The annotation 060°/70°SE refers to an azimuth of 060 degrees, dipping 70 degrees to the southeast. GPS refers to global positioning system with co-ordinates reported in UTM grid, Zone 8, Nad 83 projection. Minfile showing refers to documented mineral occurrences on file with the British Columbia Geological Survey. DDH refers to diamond drill hole and ATV refers to all terrain vehicle.

The term ppm refers to parts per million, which is equivalent to grams per metric tonne (g/t) and ppb refers to parts per billion. The abbreviation oz/ton and oz/t refers to troy ounces per imperial short ton. The symbol % refers to weight percent unless otherwise stated.

Elemental abbreviations used in this report include gold (Au), silver (Ag), lead (Pb), zinc (Zn), copper (Cu), iron (Fe), arsenic (As), antimony (Sb), manganese (Mn), sulphide (S) and oxide (O). Minerals found on the Tagish Lake Project include pyrite (iron sulfide), tetrahedrite (CuFeAsS), sphalerite (zinc sulfide), galena (lead sulfide), chalcopyrite (copper, iron sulfide), molybdenite (molybdenum sulfide), and malachite and azurite (both hydrous copper carbonates).

2.3 Source Documents

Sources of information are detailed below and include the available public domain information and private company data.

- Research of Minfile data at http://www.em.gov.bc.ca/Mining/Geolsurv/Minfile/default.htm .
- Research of mineral titles at http://www.em.gov.bc.ca/Mining/Geolsurv/MapPlace and http://www.em.gov.bc.ca/Mining/Geolsurv/MapPlace and http://www.em.gov.bc.ca/Mining/Geolsurv/MapPlace and http://www.em.gov.bc.ca/Mining/Geolsurv/MapPlace and http://www.em.gov.bc.ca/Mining/Geolsurv/MapPlace and http://www.em.gov.bc.ca/Mining/Geolsurv/MapPlace and http://www.em.gov.bc.ca/Mining/Geolsurv/MapPlace and http://www.em.gov.bc.ca.
- Review of company reports (*particularly Aspinall, 2010*) and annual assessment reports filed with the government at http://199.247.132.58:8000/cgi-bin/gw/chameleon.
- Review of geological maps and reports completed by the British Columbia Geological Survey or its predecessors (*particularly Mihalynuk*, 1999) and the Geological Survey of Canada.
- Published scientific papers on the geology and mineral deposits of the region and on mineral deposit types.
- The author has previous independent experience and knowledge of the regional area having worked throughout the belt for JC Stephen Explorations Ltd. in the early 1980's.
- Site visit on the property by the author on July 27, 2010, accompanied by Nicholas Clive Aspinall, P.Eng. of Atlin British Columbia, who supervised the 2005 and 2008 to 2010 exploration programs on the property.
- Review of prospecting notes and reports on the general area compiled by Mr. Keith Lumsden, (deceased), provided by Mr. Bill Barrett Sr of Carcross to Clive Aspinall.
- A review of pertinent news releases of Blind Creek Resources Limited and of other companies conducting work in the regional area.

2.4 Limitations, Restrictions and Assumptions

The author has assumed that the previous documented work on the property is valid and has not encountered any information to discredit such work. Two check samples were collected from the old adit in 2010 by the author and are consistent with the tenor of mineralization previously reported, but do not constitute detailed quantitative check analyses.

2.5 Scope

This report describes the geology, previous exploration history and mineral potential of the Tagish Lake Project. Research included a review of the historical work that related to the immediate and surrounding area of the property. Regional geological data and current exploration information have been reviewed to determine the geological setting of the mineralization and to obtain an indication of the level of industry activity in the area. The property was examined and evaluated by the author on July 27, 2010 for Blind Creek Resources Limited, the registered owner of the property. Previous work by Blind Creek Resources Limited consisted of geological mapping, prospecting, rock and minor reconnaissance conventional and MMI soil geochemistry, and a limited ground magnetic survey (*Aspinall, 2010*).

Based on the literature review, property examinations and review of the data and results from the 2005 to 2010 exploration programs, funded by Blind Creek Resources Limited recommendations are made for the next phase of exploration work. An estimate of costs has been made based on current rates for drilling, geophysical surveys and professional fees in British Columbia.

2.0 RELIANCE ON OTHER EXPERTS


The author has relied in part upon work and reports completed by others in previous years in the preparation of this report. Although the author personally collected samples to verify the tenor of mineralization exposed on the property, thorough checks to confirm the results of such prior work and reports have not been done. The author has no reason to doubt the correctness of such work and reports. Unless otherwise stated the author has not independently confirmed the accuracy of the data.

Further, while claim data, title documents and option agreements were reviewed for this study, this report does not constitute nor is it intended to represent a legal, or any other, opinion as to the validity of the title and exact size of the claims.

4.0 PROPERTY DESCRIPTION AND LOCATION (Figure 1)

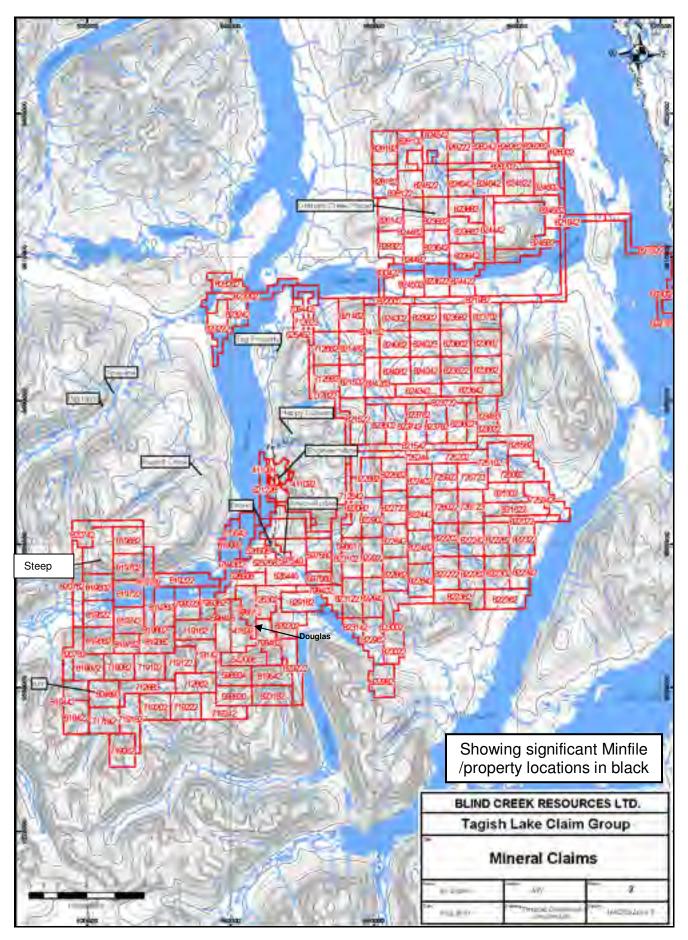
4.1 Location

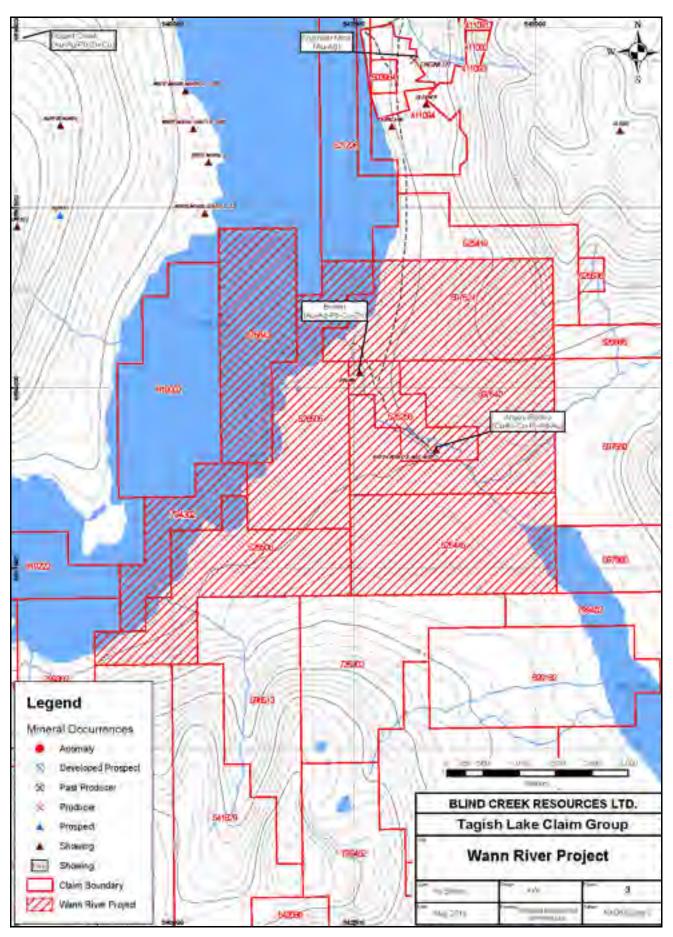
The Tagish Lake Project, NTS map sheets 104M/8 & 9, 104N/5 & 12, is located 15-35 km west of the community of Atlin in northwestern British Columbia, approximately 180 km by road southeast of Whitehorse, Yukon Territory via the Alaska Highway and Hwy 7. The main work on the property is centered at a latitude of 59°27'N and a longitude of 134°15.5'W.

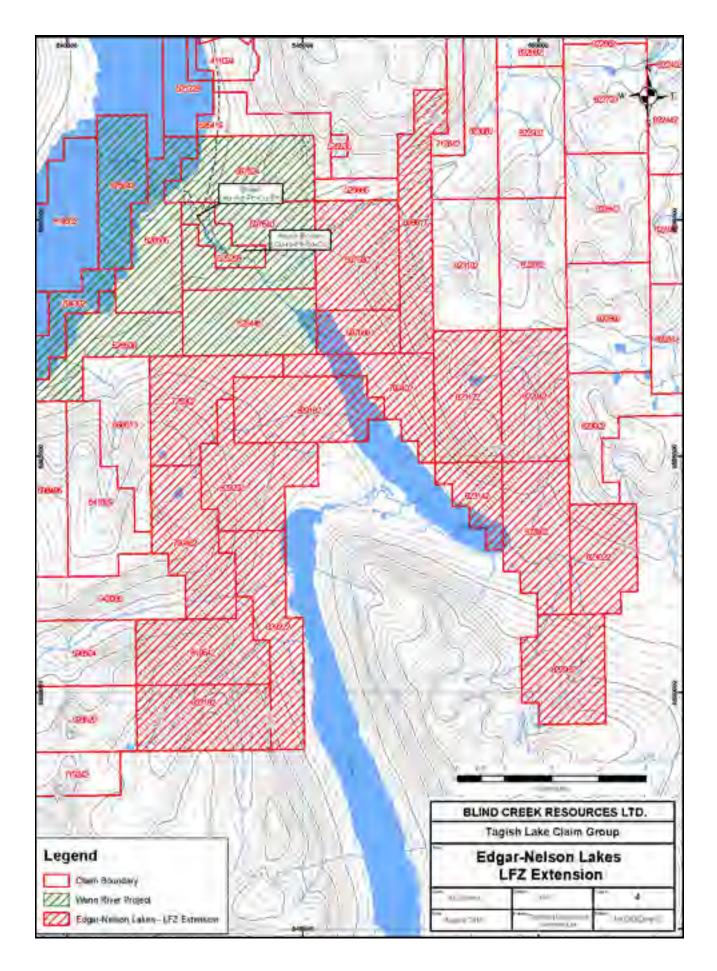
4.2 Land Tenure (Figures 2 to 9)

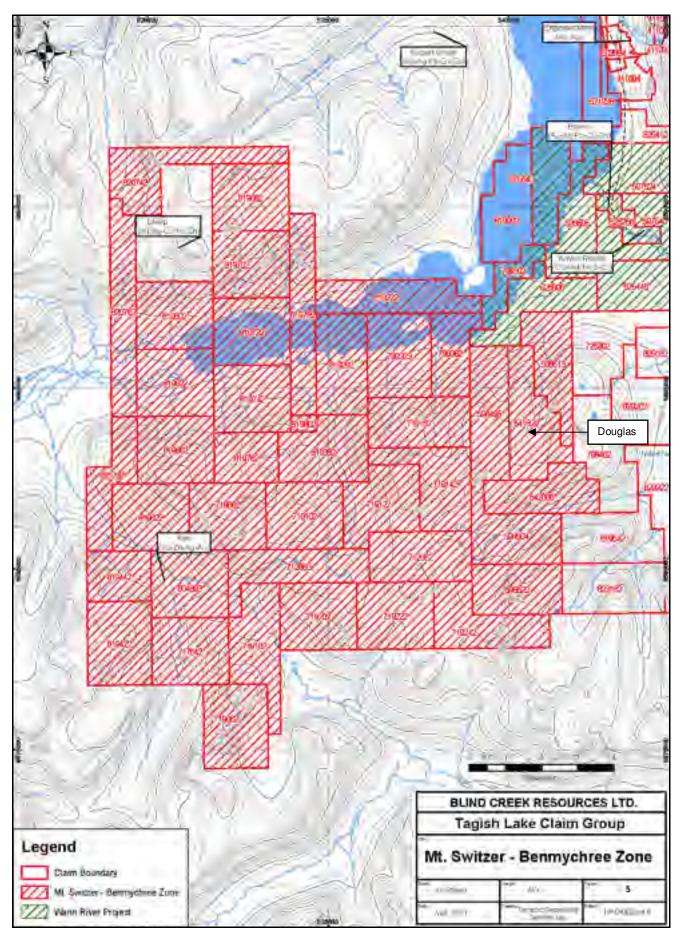
The Tagish Lake Project consists of 188 contiguous mineral claims covering an area of 67,055.902 hectares in the Atlin Mining Division *(Figure 2)*. The registered owner of all claims is Blind Creek Resources Limited of Vancouver, British Columbia. All claims were staked in accordance with Mineral Titles Online on NTS map sheets 104M/8 & 9, 104N/5 & 12, available for viewing at <u>http://www.mtonline.gov.bc.ca</u> and have not been legally surveyed. Current work was completed on tenure numbers 525258, 526505, 597524 and 597540. A detailed statement of claims comprising the Tagish Lake mineral claim group is shown in Appendix I and a table summarizing pertinent claim data for the Wann River portion, where current work has been concentrated, follows.

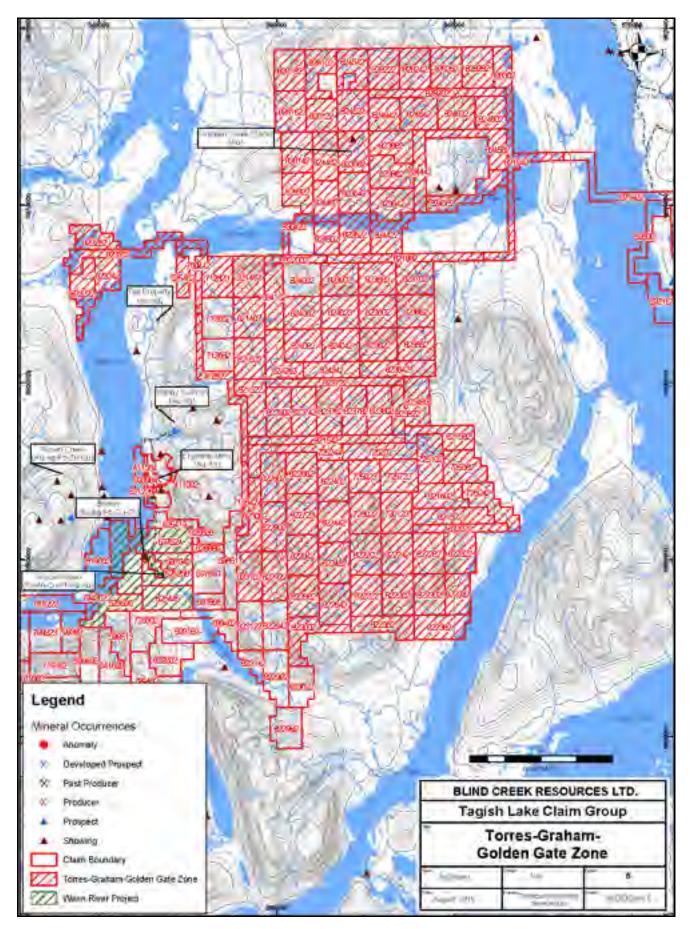
Claim	Tenure	Owner	Issue	Expiry	Area						
Name	No.	No.	Date	Date	(ha)						
Whine	525258	203166*	2006/jan/13	2011/may/01	115.223						
Tagish 5	526505	203166*	2006/jan/27	2011/may/01	362.126						
Tagish 6	526506	203166*	2006/jan/27	2011/may/01	345.866						
Tagish #1	525419	203166*	2006/jan/14	2011/may/01	197.403						
Lower Engineer 1	597524	203166*	2009/jan/14	2011/may/01	394.9014						
Lower Engineer 2	597540	203166*	2009/jan/14	2011/may/01	411.5329						
Wann #1	675643	203166*	2009/nov/27	2011/may/01	296.1937						
Tagish Lake Southwest	794302	203166*	2010/jun/17	2011/jun/17	148.2057						
TOTAL					2,271.45						

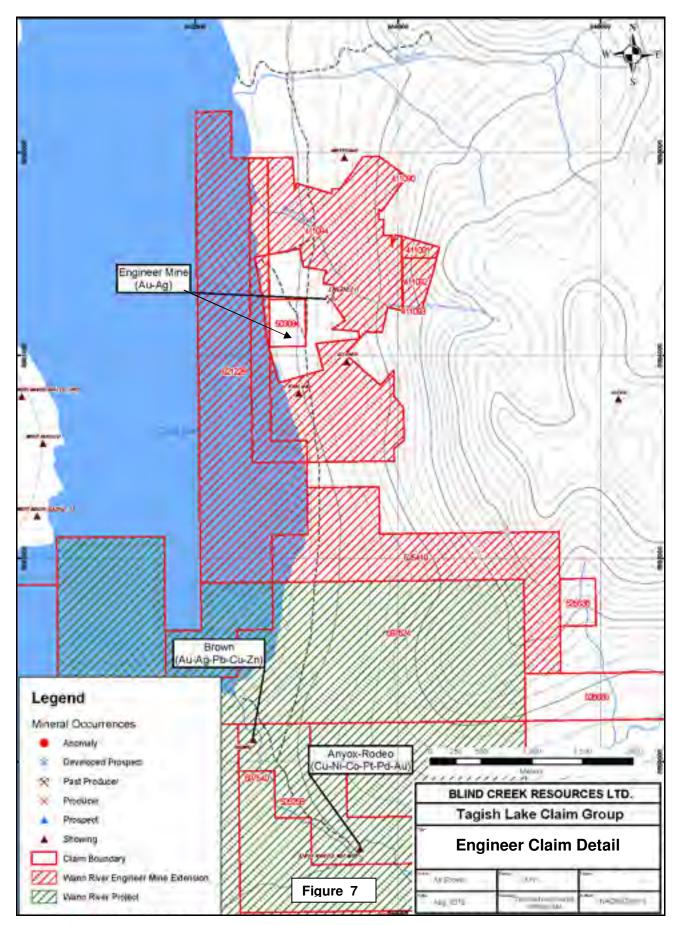

TABLE 1: Claim data Wann River Project area

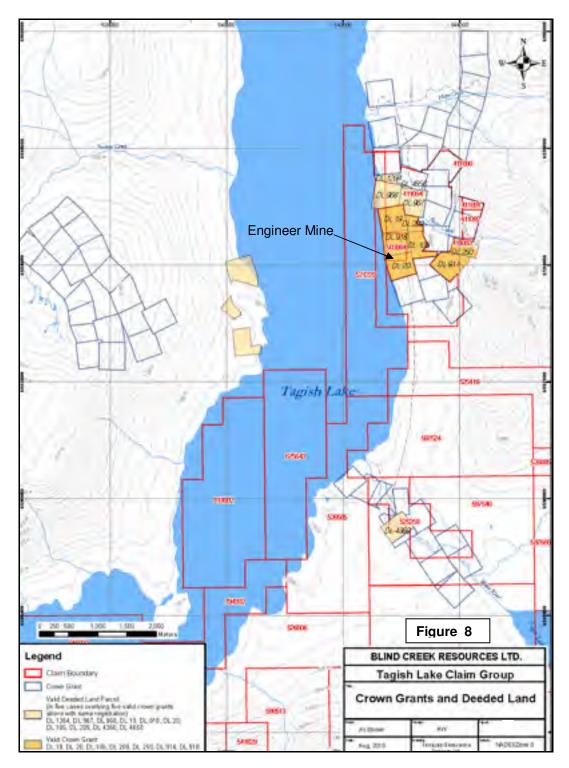

* 203166: Blind Creek Resources Limited

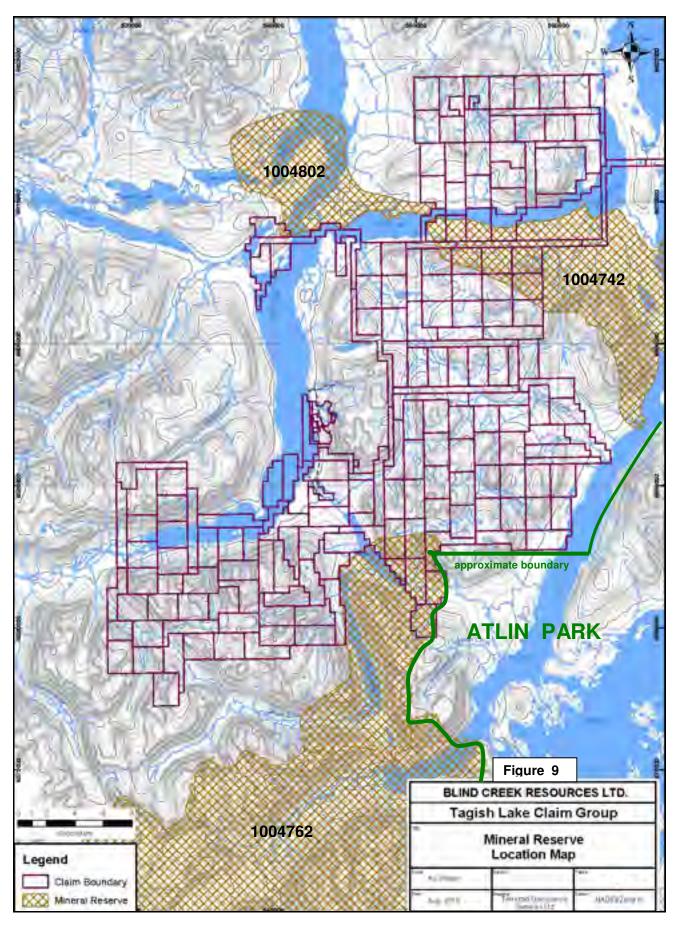

The Tagish Lake Project has been subdivided into five separate blocks, shown in detail on the associated figures, covering prospective gold-silver zones: Wann River (*Figure 3*), Edgar - Nelson Lakes Llewellyn Fault Zone Extension (*Figure 4*), Mt. Switzer - Ben My Chree Zone (*Figure 5*), Torres - Graham - Golden Gate Zone (*Figure 6*), and Engineer (*Figure 7*).


The claims are located within the Traditional Territories of the Carcross/Tagish and Taku River Tlingit First Nations as identified in the Statements of Intents of the First Nations. The land in which the mineral claims are situated is Crown Land. The mineral claims fall under the jurisdiction of the British Columbia Government. Three mineral reserves occur in the Tagish Lake Project. Mineral Reserve Number 1004762 covers a portion of the Edgar - Nelson Lakes Llewellyn Fault Zone Extension, approximately 2 km southeast of the Wann River area, and Mineral Reserve Numbers 1004742 and the southwest edge of 1004802 cover a portion of the Torres - Graham - Golden Gate Zone (*Figure 9*). Compensation for the loss of the claim area is generally negotiated with the British Columbia government. Atlin Park borders the Torres - Graham - Golden Gate Zone Zone on the south.


One deeded parcel of land (DL4360), with a small cabin and a 2 km access road from Tagish Lake is located within the Wann River area (*Figure 8*). The parcel pertains only to surface rights and not mineral title (*Aspinall, 2010*). All other surveyed parcels of land shown without a number designation on Figure 8 have expired and pose no conflict to mineral claim titles (*Aspinall, 2010*).







The Engineer portion of the Tagish Lake Project excludes the Engineer Mine property consisting of 76.76 hectares held by BCGold Corp, Vancouver British Columbia. The mine tenure comprises five deeded land parcels that precisely overlie five crown grants, DL 19, DL 200, DL 918, DL 106 and DL 20 (*Figure 8*). Two other crown grants, DL 250 and DL 914, are located southeast of the Engineer Mine and are also excluded from the project (*Aspinall, 2010*). Three other deeded parcels of land, DL1264, 967 and 968 occur within the Engineer portion of the Tagish Lake Project (*Figure 8*). The parcels pertain only to surface rights and not mineral title (*Aspinall, 2010*).

Certain types of exploration activity require a Mines Act Permit, issued by the British Columbia Government, prior to conducting work on a mineral property. The proposed helicopter supported drill program on the Wann River area requires a permit, which has been obtained *(Aspinall, 2010)*. Other permits governed by laws and regulations pertaining to development, mining, production, taxes, labour standards, occupational health, waste disposal, toxic substances, land use, environmental protection, mine safety and other matters, may be required as the project progresses.

To the author's knowledge the Tagish Lake property area is not subject to any environmental liability.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Access, Local Resources and Infrastructure

The project area is accessible by helicopter, float plane or boat from Atlin, located 15-35 km to the east, or alternatively by boat or barge from the communities of Tagish and Carcross, located 90 km to the north. During winter months the property is easily accessible from Atlin by skidoo, provided lake ice is firm. Atlin is located approximately 180 km by road southeast of Whitehorse, Yukon Territory via the Alaska Highway and Highway 7. The communities of Tagish and Carcross are connected to the Alaska Highway by road, and Carcross is connected to Skagway, Alaska, an all season port, by both road and railroad.

In the Wann River area one good 1.5 km ATV trail is present on the east side of the Wann River, leading from Tagish Lake to an old dam site (*Figures 2 and 3*). Suitable camp locations exist along the shore of Tagish Lake with the recent camp situated at 6590367mN, 542031mE. A walking trail was established from the camp to the vein occurrences along the west side of the Wann River. There are six cabins in the lower Wann River area and a trailer camp and dock at the Engineer Mine on the east shore of Tagish Lake (*Aspinall, 2010*).

Atlin is the closest town, with a population of approximately 400. Facilities include an airstrip, helicopter service, grocery stores, health centre, police station, a service station, post office, accommodation and restaurants. Some heavy equipment and a small mining oriented labour force are available for contract mining work. Complete services are available in Whitehorse, approximately 2 hours by all-weather highway, 180 km northwest of Atlin (*Figure 1*).

5.2 Physiography, Climate and Infrastructure

The Tagish Lake Project generally covers an area between Tagish and Atlin Lakes within northwestern British Columbia (*Figure 1*). It includes the Wann River valley, where the majority of the work has been concentrated, between Tagish Lake and Edgar Lake along the southeast shore of Tagish Lake. The topography is gentle (*Figure 2*). Elevations range from about 700m above sea level (ASL) along Tagish Lake to 1450m in the northeastern property area. Lower elevation slopes, below treeline at 1100 to 1400m ASL, are forested with lodge-pole pine, spruce, balsam and cottonwood trees with sparse hemlock. Outcrop is sparse, except along the Wann River, but amounts to less than 1%.

In the Wann River area water is available from the Wann River, a fast flowing river once studied as a possible site for a hydroelectric development *(Figures 2 and 4)*. Elevation of Tagish Lake at the northwest end of the Project area is 656m ASL, while Edgar Lake 2.5 kilometres to the southeast is 765m, a difference of 109m. The lower section of Wann River drains from Edgar Lake into Tagish Lake, and is extremely fast flowing, even grading to rapids in part of its course. Ling cod, but no salmon, lake trout, grayling or other sport fish are reported in Edgar and Nelson Lakes. Tagish Lake contains lake trout and grayling, but is not salmon bearing. *(Aspinall, 2010)*.

The project area lies within the Tagish district of northwestern British Columbia with long, cold winters and short, mild to cool summers. Due to proximity to the Boundary Ranges, the area is strongly influenced by coastal weather systems and attendant higher precipitation patterns. Summers are moderately cool to hot, with average temperatures of 5 °C to 18 °C. Winters are cold, with average temperatures of -11 (high) to -20 °C (low). The exploration season lasts from mid May until October. "Boating on Tagish Lake can be hazardous and should only be undertaken by persons with experience in operating large boat craft." (Aspinall, 2010).

Although there does not appear to be any topographic or physiographic impediments, and suitable lands appear to be available for a potential mine, including mill, tailings storage, heap leach and waste disposal sites, engineering studies have not been undertaken and there is no guarantee that such areas will be available within the subject property. The nearest source of hydroelectric power is Atlin, British Columbia, which commenced production in April, 2009.

6.0 HISTORY

The Tagish Lake Project lies proximal to the historic Engineer gold mine of BCGold Corp., reportedly discovered in 1899 by engineers surveying a possible southern route for the White Pass and Yukon Railway (*Mihalynuk, 1999*). The Kirkland (now part of the Tagish Lake Group) and the Gleaner groups of mineral claims (partly within the Tagish Lake Group) were subsequently staked adjacent to the Engineer Mine (*Minister of Mines, 1913*).

The Kirkland group (also referred to as Kirtland) consisted of six mineral claims owned by Captain W. Hawthorn, R.N. and Thomas Kirkland of Atlin. Two shallow shafts (3 and 4m) were sunk directly south of the present Engineer Mine property on veins, trending NE/88°NW and 023°/76°SE, resembling those at the Engineer Mine *(Minister of Mines, 1914)*. Some gold was reported *(Minister of Mines, 1914)*. The Gleaner group consisted of three mineral claims and a fraction, situated on the east side of the Engineer Mine *(Minister of Mines, 1914)*. Five veins were reported that showed small amounts of native gold, pyrite and iron oxide *(Cairnes, 1913)*.

Seven Minfile occurrences are documented by the British Columbia Geological Survey on the Tagish Lake Project, which include the Kim showing (Minfile Number 104M 063) in the southwestern property area, the Douglas showing (Minfile Number 104M 092), in the southern property area, the Kirkland showing (Minfile Number 104M 015) and part of the Gleaner prospect (Minfile Number 104M 016), both proximal to the Engineer Mine, the Graham Creek placer (Minfile Number 104M 023), and upstream extent, in the northern property area and the Brown polymetallic vein showing (Minfile Number 104M 026) and the copper-nickel-platinum-palladium Anyox-Rodeo prospect (Minfile Number 104M 017) within the Wann River area.

An old adit is exposed at the Brown polymetallic vein showing on the southwest side of the Wann River at 6590036mN, 542629mE, Nad 83, Zone 8 projection. Two adits and a pit are documented at the copper-nickel-platinum-palladium Anyox-Rodeo showing *(Cathro, 1968)*. Two adits and several trenches occur on the Gleaner prospect and two shafts and several trenches on the Kirkland showing in the Engineer portion of the property.

The work completed by various operators as documented in British Columbia Minfile, various government publications of the British Columbia Geological Survey or its predecessors and the Geological Survey of Canada and company publications (primarily available as assessment reports filed with the government), is tabulated below.

- 1913-14? Excavation of shafts at Kirkland showing and adits at Gleaner on veins similar to that of the adjacent Engineer Mine with some gold reported *(Minister of Mines, 1913-14).*
- 1918-20? At the Brown showing a 10m adit was driven "...showing two seams of quartz carrying galena and blende" (*Minister of Mines, 1918*). An open cut above the adit exposes quartz mineralized with galena sphalerite and freibergite and a number of open cuts along the shore (Lum trenches) expose small, discontinuous veins of quartz (*Minister of Mines, 1918*). Possible excavation of the adits and pit on Anyox-Rodeo showing.
- 1965-66 Four showings were discovered by Falconbidge Nickel Mines Limited, two copper and one lead-zinc skarn occurrences and a chalcopyrite bearing vein/fracture filling in the Kim showing area *(Chateris, 1966)*. Sampling of

chalcopyrite and quartz with malachite staining at the Kim showing, in one of several poorly exposed shear zones hosted by granodiorite, returned 109.7 g/t Ag, 0.7 g/t Au and 4.0% Cu from a 30 to 50 piece sample across 4.5 to 6m (*McDougall, 1966*).

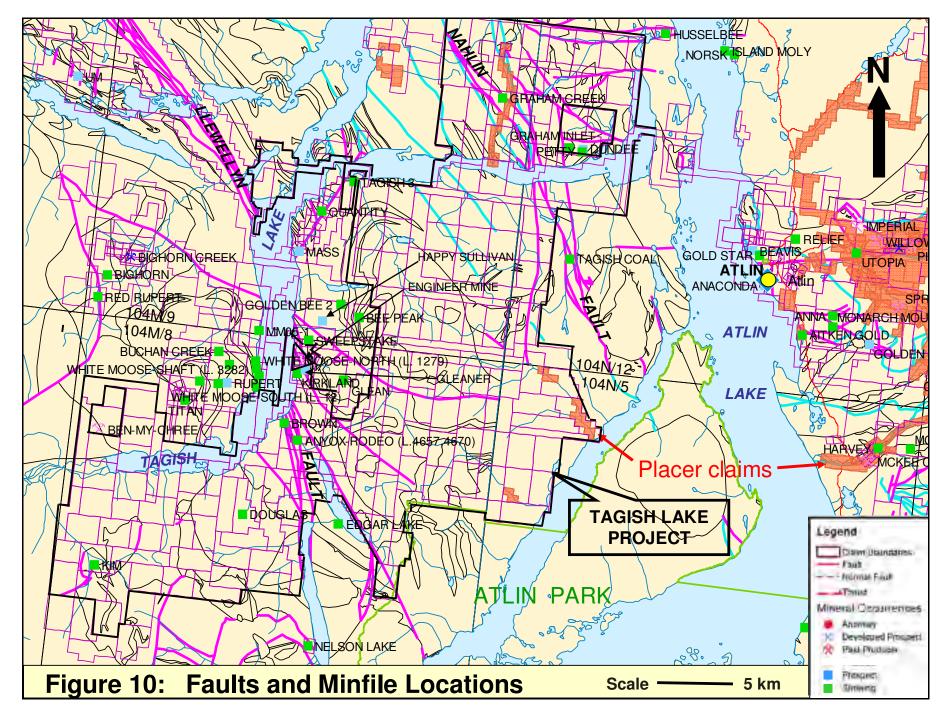
- 1968 Program of linecutting and a 11 line km magnetic and electromagnetic geophysical survey on the Brown and Anyox-Rodeo showing areas by Idaho Silver Mines Ltd., identifying significant anomalies *(Cathro, 1968)*.
- 1980 Geological mapping, geochemical sampling and diamond drilling of 306m in 3 holes on Gleaner showing area, by Windarra Minerals Limited under option from Mr. K. Lumsden, with maximum results of 1.0 g/t Au, 8.7 g/t Ag over 11.7m, including 2.1 g/t Au, 44.6 g/t Ag over 1.7m in DDH 80-1 (*Morgan, 1981*).
- 1993 Prospecting, trenching, rock sampling, 3.5 line km of grid, preliminary VLF-EM survey, adit rehabilitation, mapping and sampling, and a geological investigation on Gleaner showing area, held by Mr. K. Lumsden *(Brownlee, 1993)*.
- 1993 Road building and trenching program on Kirkland showing area, held by Mr. K. Lumsden *(Brownlee, 1993)*. Results could not be located.

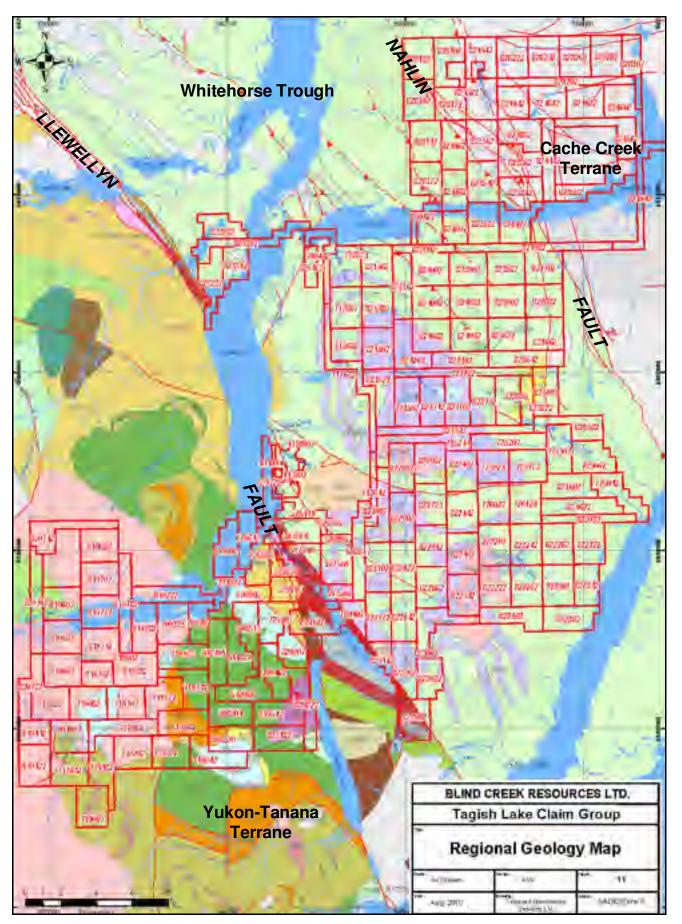
7.0 GEOLOGICAL SETTING

7.1 Regional Geology (Figures 10 to 12)

The BC Geological Branch completed 1:100,000 scale mapping in the Tagish Lake area in the 1990's. The regional geology below is summarized from this mapping *(Mihalynuk, 1999)*.

The Tagish Lake Project is situated at the boundary between the north-northwest trending Coast Plutonic Belt in the west and the Intermontane Belt in the east. The Coast Intrusions are mainly the result of Late Cretaceous and Tertiary tectonism and magmatism.


Two crustal scale sub-parallel northwest trending faults, transect the Tagish Lake Project, the Nahlin Fault Zone in the northeastern property area and the Llewellyn Fault Zone (LFZ) through the Wann River and Edgar - Nelson Lakes - Llewellyn Fault Zone Extension portions of the project area. The faults are grossly coincident with terrane boundaries and appear to have been intermittently active from Late Triassic into Tertiary time. Weakly metamorphosed, Carboniferous to Triassic oceanic plateau remnants of the northern Cache Creek Terrane occur to the east of the Nahlin Fault Zone and are exposed in the northeast portion of the Torres-Graham-Golden Gate Zone of the Tagish Lake Project. Triassic arc, clastic arc apron, and overlying Jurassic basinal sedimentary strata of the Whitehorse Trough occur between the faults and underlie the Engineer, eastern Wann River and most of the Torres-Graham-Golden Gate portions of the project area. Two suites of metamorphic rocks of the Yukon-Tanana Terrane occur to the west of the Llewellyn Fault Zone, a pre-Mississippian, siliciclastic succession of pericratonic origin, and a Devonian to Permian suite correlative with volcanic arc strata of the Stikine Terrane. Rocks of the Yukon-Tanana Terrane are exposed in the Wann River, Mt. Switzer - Ben My Chree and Edgar - Nelson Lakes - Llewellyn Fault Zone Extension portions of the Tagish Lake Project.


The above lithologies are intruded by Late Cretaceous to Tertiary bodies of the Coast Plutonic Complex and intruded and overlain by Eocene plugs, dykes and associated volcanic rocks and basal coarse clastic sedimentary rocks of the Sloko Group.

The dominant structural feature within the project area is the Llewellyn Fault Zone, a system of northwest trending, steeply northeast dipping structures. In British Columbia the Llewellyn Fault Zone is a locally discreet, near vertical structure tens of metres wide, up to a maximum of one to three km with lithologies commonly silicified, argillically altered, and pervasively cleaved within the fault zone commonly with ductile deformation fabrics (*Mihalynuk, 1999*).

Mineralization within the Tagish Lake area is intimately associated with volcanic centres of the Sloko Group and Llewellyn fault-linked structures. Examples include the past producing Engineer gold-silver Mine, the Teepee Peak gold prospect, located northwest of Tagish Lake, and the past producing Skukum gold-silver mine in the southern Yukon. (Mineralization at Skukum is also related to deep fault structures). The regional faults and Minfile locations are outlined on Figure 10, showing a concentration of Minfile occurrences along the Llewellyn Fault Zone. A belt of anomalously high regional gold-arsenic and antimony geochemistry extends the length of the Tagish Lake area, coextensive with the crustal scale Llewellyn Fault (*Mihalynuk, 1999*).

Potential exists within the Tagish Lake Project for epithermal gold-silver (Engineer Gold Camp), polymetallic vein (Ben-My-Chree), gold quartz vein (potential in Graham Creek area), copper skarn (Whitehorse Copper) and gold skarn (TP in northern Tagish region) deposits. There is also potential for Kuroko-style volcanogenic massive sulphide mineralization (such as at Tulsequah Chief) within the Yukon-Tanana Terrane and copper-molybdenum-gold porphyry and gold-silver rich Eskay type shallow subaqueous hot spring mineralization within the Whitehorse Trough sections of the Tagish Lake Project.

Legend	
Claim Boundary	
Fault Type	
Fault	
- Normal Fault	Eccene: Sloko Group (Hyder Group)
- A Thrust	Plutonic Suite
Quaternary Unit	PeEShqd - Sloko-Hyder Plutonic Suite quartz diontic intrusive rocks PeEShqr - Sloko-Hyder Plutonic Suite granite, alkali feldspar granite intrusive rock
Eocene	Packing - one of your reaching gainer, and motion grainer income for
Sloko Group	ESv - Sloko Group undwided volcanic rocks
EScg - Sloko Group conglomenate, coarse clastic sedimentary rocks	ESvb - Sloko Group basaltic volcanic rocks
Lower Jurassic	ESvf - Sloko Group rhyolite, felsic volcanic rocks
Laberge Group	Late Cretaceous to Tertiary
IJLIst - Inidin Formation mudstone, sitstone, shale fine clastic sedmentary rocks	Coast Intrusions Windy Table Complex
IJList - Inián Formation argilite, greywacke, wacke, conglomerate turbidites	LKWlgd - Windy Table Complex quartz diontic intrusive rocks
Devonian-Triassic? (Mesozoic)	Cretaceous (Mesozoic?)
Boundary Ranges Metamorphic Suite	EKgr - Unnamed granite, alkali feldspar granite intrusive rocks
DTrBR - Boundary Ranges Metamorphic Suite metamorphic rocks, undivided	EKdr - Unnamed diontic intrusive rocks
DTrBRgs -Boundary Ranges Metamorphic Suite greenstone, greenschist metamorphic rocks	ERto - Unnamed tonalite intrusive rocks
DT/BRIm - Boundary Ranges Metamorphic Suite Imestone, marble, calcareous sedimentary rocks	Early Jurassic
Late Triassic	EJum - Unnamed ultramatic rocks
Stuhini Group	EJAlgd - Aishihik Plutonic Suite granodiontic intrusive rocks
uTrScg - Stuhini Group conglomerate, coarse clastic sedimentary rocks	Late Triangle
	Late Triassic
uTrSst -Stuhini Group argilite, greywacke, wacke, conglomerate turbidites	Stuhini Group
uTrSIm - Stuhini Group limestone, marble, calcareous sedimentary rocks	uTrSv - Stuhini Group undivided volcanic rocks
uTrSs - Stuhini Group undwided sedimentary rocks	LTrStdg - Mesozoic - Stikine Plutonic Suite monzodioritic to gabbroic intrusive rock
Paleozoic	uTrSva - Stuhini Group andesitic volcanic rocks
Florence Range Metamorphic Suite	uTrSvb - Stuhini Group basattic volcanic rocks
mDim - Unnamed limestone, marble, calcareous sedimentary rocks	Paleozoic
mDpg - Unnamed paragneiss metamorphic rocks	Devonian-Mississippian
Wann River Gneiss	EMgr - Unnamed granite, alkali feldspar granite intrusive rocks
PBRog - Boundary Ranges Metamorphic Suite orthogneiss metamorphic rocks	DCgm - Unnamed quartz monzonitic intrusive rocks

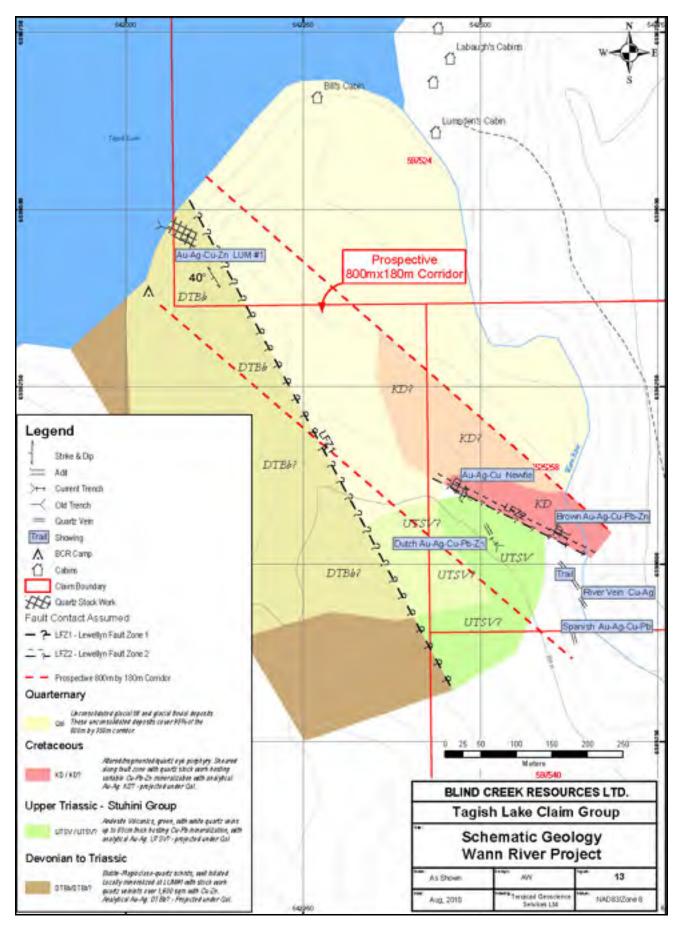
BLIN	D CREEK RESOUR	RCES LTD.					
Tag	ish Lake Claim	Group					
	Legend to accompany Regional Geology Map						
As Shawn	Design AVV	fore 12					
Aug, 2010	Terracad Geoscience	NAD83/Zone 8					

7.2 Detailed Geology

7.2.1 Wann River (Figure 13)

Only a small portion of the Tagish Lake Project has been mapped in detail, covering 28 hectares of the 2,271.45 hectare Wann River area within the Tagish Lake Project. The following description of the geology is summarized from Aspinall (2010). The mapping covers an 800m long by 180m wide corridor striking at an azimuth of 160° from the Lum#1 trenches (trenches 1 and 2) on the southeast side of Tagish Lake to a showing on the southwest banks of the Wann River (River showing).

The corridor is 99% covered by glacial-fluvial tills in the low lands adjacent to the Wann River channel, with colluvial gravels observed along the eastern slopes of the channel. Low lying glacial fluvial morainal banks are present on the west side of the river in its lower sections. Thickness of overburden is estimated to be up to 5m. *(Aspinall, 2010)*.


Outcrop and subcrop of Devonian to Triassic Boundary Range biotite-feldspar-quartz schist (**DTBG**) occurs for 300m along the southwest side of the corridor. This unit hosts the quartz vein stockwork exposed in the Lum #1 & 2 trenches. Immediately to the northeast, an assumed fault contact (**LFZ**₁) with a northwest trending faulted panel of Upper Triassic Stuhini andesite (**UTSV**) hosts at least two separate, parallel, northwest trending mineralized quartz vein systems, the Trail - River Vein, and the Dutch Vein systems. Outcrops of Upper Triassic Stuhini andesite, (**UTSV**) are barely exposed above the vein systems.

A second assumed fault contact, (**LFZ**₂) with a northwest trending panel of altered quartz eye porphyry is believed to be part of a Cretaceous diorite protolith (**KD**) *(Mihalynuk, 1999)* lies immediately to the northeast of this panel. Traces of Upper Triassic Stuhini andesite, (**UTSV**) are present on the southwest side of the shear in contact with the above intrusive. Within this KD panel is a shear zone 10m wide with an inner multi-quartz veined core zone 2m wide striking 110° having a variable near-vertical dip as seen at the Brown Showing. The Brown and the Newfie showings, 130m apart, appear to occur within the same rock type and shear zone.

All panels and fault contacts discussed above are part of the Llewellyn Fault Zone. The Devonian to Triassic Boundary Range biotite-feldspar-quartz schist (**DTBG**) forms the southwest boundary to the main Llewellyn Fault, although additional splay faulting to the southwest is expected.

7.2.2 Engineer (Figure 18)

The geology of the Engineer Gold Camp, which lies approximately 10 km east of the Cretaceous to Tertiary Coast Plutonic Complex, is well documented *(British Columbia Minfile, 2010)*. The area is underlain by Lower Jurassic Laberge Group greywacke, shale, slate and argillite which host the vein systems and are folded into a syncline with a northwest trending fold axis. Sedimentary rocks on the west limb trend 120 % 30-40 % E Small granodiorite plugs outcrop west of Engineer Mountain and south of Bee Peak. Cretaceous or later (probaby Sloko Group equivalent) rhyolites, trachytes and volcanic breccias form a 4 km subcircular volcanic cap or neck, preserved predominantly as a down-dropped block, to the east of the Engineer Mountain plug. Feldspar porphyry, trachyte, and andesite dykes occur in the vicinity of, and are reportedly offset by, the Engineer veins *(Figure 18)*.

8.0 DEPOSIT TYPES

The 800 by 180m corridor within the Wann River portion of the Tagish Lake Project contains precious metal enriched multi-phase quartz veins and stockworks with minor associated base metal mineralization that appear to have features of the low sulphidation epithermal gold model. Reported vein mineralization on the Engineer portion of the Tagish Lake Project (Gleaner prospect and Kirkland showing), described as similar to the Engineer Mine, would have potential for the same deposit type as the Mine. Gold bearing veins in the Engineer Gold Camp appear to occur adjacent to splays of the crustal scale Llewellyn Fault zone.

Two fluid inclusion determinations by Mihalynuk on one sample from the Double-Decker vein at the nearby Engineer Mine showed homogenization temperatures between 171°C to 195°C, which would place them in the temperature range of an epithermal envelope (*Mihalynuk, 1999*). Gold/electrum vein emplacement at that mine possibly occurred 800m below the base of the Sloko volcanic rocks and the mineralization and volcanics are closely related in time (*Mihalynuk, 1999*).

A polymetallic vein model has been postulated for mineralization at the Brown showing within the Wann River area, and at the Kim and Douglas showings in the southwestern property area (*British Columbia Minfile, 2010*). Minor copper and lead-zinc skarn type mineralization is also reported from the Kim showing area (*Chateris, 1966*).

8.1 Low Sulphidation Epithermal Vein Model

The following characteristics of the low sulphidation epithermal gold deposit model are primarily summarized from Panteleyev (1996). The mineralization and grade and tonnage figures discussed below are not necessarily indicative of the mineralization on the Tagish Lake Project which is the subject of this report.

Examples of this type of deposit include the Midas Mine of Franco Nevada in Nevada, the El Penon Mine of Meridian Minerals in Chile, and the former Baker and Cheni Mines in the Toodoggone District of British Columbia. Commodities are gold and silver with minor copper, lead and zinc.

Mineralization typically occurs as quartz veins, stockworks and breccias carrying gold, silver, electrum, argentite and pyrite with lesser and variable amounts of sphalerite, chalcopyrite, galena, rare tetrahedrite and sulphosalt minerals in high level (epizonal) to near surface environments. The ore commonly exhibits open space filling textures and is associated with volcanic-related hydrothermal to geothermal systems in volcanic island and continent margin magmatic arcs and continental volcanic fields with extensional structures.

Host rocks include most types of volcanic rocks with calc-alkaline andesitic compositions predominating. Some deposits occur in areas with bimodal volcanism and extensive subaerial ashflow deposits. A less common association is with alkalic intrusive rocks and shoshonitic volcanic rocks. Clastic and epiclastic sedimentary rocks host deposits in intra-volcanic basins and structural depressions.

Gangue minerals include quartz, amethyst, chalcedony, quartz pseudomorphs after calcite and calcite, with minor adularia, sericite, barite, fluorite and calcium-mangnesium-manganese-iron carbonate minerals such as rhodochrosite, hematite and chlorite.

Alteration generally consists of extensive silicification occurring as multiple generations of quartz and chalcedony, commonly accompanied by adularia and calcite. Pervasive silicification in vein envelopes is flanked by sericite-illite-kaolinite assemblages. Intermediate argillic alteration (kaolinite-illite-montmorillonite ±smectite) forms adjacent to some veins. Advanced argillic alteration (kaolinite-alunite) may form along the tops of mineralized zones. Propylitic alteration dominates at depth and peripherally. Weathered outcrops are often characterized by resistant quartz ± alunite 'ledges' and extensive bleached, clay-altered zones on the edges with supergene alunite, jarosite and other limonite minerals.

The deposits occur in high-level hydrothermal systems from depths of approximately 1 km to surficial hotspring settings. They are associated with regional-scale fracture systems related to grabens, ±resurgent calderas, flow-dome complexes and rarely, maar diatremes. Extensional structures in volcanic fields (normal faults, fault splays, ladder veins and cymoid loops, etc.) are common; locally graben or caldera-fill clastic rocks are present. High-level (subvolcanic) stocks and/or dikes and pebble breccia diatremes occur in some areas. Locally resurgent or domal structures are related to underlying intrusive bodies.

Ore zones are typically localized in structures, but may occur in permeable lithologies. Upward-flaring ore zones centred on structurally controlled hydrothermal conduits are typical. Large (greater than 1m wide and hundreds of metres in strike length) to small veins and stockworks are common with lesser disseminations and replacements. Vein systems can be laterally extensive but ore shoots have relatively restricted vertical extent. High-grade ores are commonly found in dilational zones in faults at flexures, splays and in cymoid loops.

Deposits are commonly zoned vertically over 250 to 350m from a base metal poor, gold-silver rich top to a relatively silver rich base metal zone and an underlying base metal rich zone grading at depth into a sparse base metal, pyritic zone. From surface to depth, metal zones contain gold-silver-arsenic-antimony-mercury, gold-silver-lead-zinc-copper, silver-lead-zinc. In alkalic hostrocks tellurides, roscoelite (vanadium mica) and fluorite may be abundant, with lesser molybdenite.

Ages of mineralization are variable although Tertiary deposits are most abundant. The age is closely related to the associated volcanic rocks but invariably slightly younger in (0.5 to 1 Ma, more or less).

Typical grade and tonnage figures for the median low sulphidation epithermal gold deposits, based on worldwide mines and U.S.A. models, include 0.77 million tonnes of 7.5 g/t Au, 110 g/t Ag and minor copper, zinc and lead for 41 Comstock-type 'bonanza' deposits and 0.3 million tonnes of 1.3 g/t Au, 38 g/t Ag and >0.3% Cu from 20 Sado-type gold-copper deposits. Associated deposit types include high sulphidation epithermal gold-silver, hotspring gold-silver, porphyry copper±molybdenum±gold and related polymetallic veins and placer gold.

Economic low sulphidation epithermal deposits are usually mined by a combination of open pit mining and underground operations with conventional cyanide milling processing, with moderate daily tonnage production. They typically contain high-grade sections, often with significant silver content, high silver to gold ratios, "clean" metallurgy, and good recoveries.

8.2 Polymetallic Vein Model

Intrusion hosted polymetallic veins occur within the Wann River and Mt. Switzer - Ben My Chree portions of the Tagish Lake Project. Examples of polymetallic deposits include the Beaverdell camp in British Columbia and Creede, Colorado, USA. Commodities include Ag, Pb, Zn (Cu, Au, Mn). Similarities exist to the orogenic type (Pogo Deposit in Alaska) and the intrusion-related gold pyrrhotite vein model such as at the past producing Snip Mine in northern British Columbia.

The following characteristics of the intrusion hosted polymetallic vein deposit model are primarily summarized from Lefebure and Hõy, editors, (1996).

Mineralization typically occurs as sulphide-rich veins containing sphalerite, galena, pyrite, silver and sulphosalt (tetrahedrite-tennantite) minerals, chalcopyrite, arsenopyrite and stibnite, in a carbonate and quartz gangue \pm specular hematite, hematite, barite and fluorite. Silver minerals often occur as inclusions in galena and native gold and electrum occurs in some deposits. Gold grades are generally low given the amount of sulphides present. Some veins contain more chalcopyrite and gold at depth.

Wall rock alteration in volcanic and intrusive host rocks is argillic, sericitic or chloritic and may be quite extensive.

Regional faults (*Llewellyn Fault Zone*), fault sets and fractures are an important ore control, although veins are typically associated with second order structures. In igneous rocks the faults may relate to volcanic centers (*Sloko Group*). Significant deposits are restricted to competent lithologies. Dykes are often emplaced along the same faults and in some camps are believed to be roughly contemporaneous with mineralization. Some polymetallic veins are found surrounding intrusions with porphyry deposits or prospects.

Individual vein systems range from several hundred to several million tonnes grading from 5 to 1500 g/t Ag, 0.5 to 20% Pb and 0.5 to 8% Zn. Copper and gold are reported in less than half the British Columbia occurrences, with average grades of 0.09% Cu and 4 g/t Au. The veins usually support small to medium-size underground mines. Larger polymetallic vein deposits are attractive because of their high grades and relatively easy benefication. They are potential sources of cadmium and germanium.

9.0 MINERALIZATION (Figures 3 and 10)

Seven Minfile occurrences are documented on the Tagish Lake Project, which include the Kim showing (Minfile Number 104M 063), and the Douglas showing (Minfile Number 104M 092), discovered by Blind Creek Resources Limited in 2006, in the southwestern

property area, the Kirkland showing (Minfile Number 104M 015) and part of the Gleaner prospect (Minfile Number 104M 016), both proximal to the Engineer Mine, the Graham Creek placer (Minfile Number 104M 023), and upstream extent, in the northern property area (*Figure 10*) and the Brown polymetallic vein showing (Minfile Number 104M 026) and the copper-nickel-platinum-palladium Anyox-Rodeo prospect (Minfile Number 104M 017) within the Wann River area.

At the Kim showing mineralization grading 109.7 g/t Ag, 0.7 g/t Au and 4.0% Cu occurs in one of several poorly exposed shear zones in a granodiorite host *(Mihalynuk* and *Mountjoy, 1990)*. Copper and lead-zinc skarn occurrences are also reported in the area *(Chateris, 1966)*.

The Douglas showing (*Figure 10*), discovered by Blind Creek Resources Limited in 2006 south of Mt Switzer, returned a maximum value of 0.6 g/t Au, 11 Ag, 0.19% Cu, 0.69% Pb and 0.41% Zn from one of five parallel 330° trending quartz-sulphide veins (*Justason and Davies, 2007*). Sulphide minerals include pyrite, chalcopyrite, galena and sphalerite. Vein widths range from 5 to 12 cm wide, and one vein was traced for 330m (*British Columbia Minfile, 2010*).

The north trending, west dipping, up to 1.2m wide Gleaner veins are situated on the northeast side of a major northwest trending shear zone, approximately 500m northeast of the main Engineer workings. Mineralization consists of pyrite and native gold hosted by sets of quartz stringers cutting sedimentary rocks, brecciated wallrock fragments cemented by quartz, and massive quartz veins. Grab samples assayed up to 1.275 grams per tonne gold (*McLeod, 1991*). Only a small amount of gold has been reported from the Kirkland veins, which represent the southerly extension of the Engineer vein system. The main 60 cm wide and 425m long Jersey Lily vein on the Kirkland reportedly consists of vuggy comb-structured quartz (*British Columbia Minfile, 2010*).

A 10m adit was driven at the Brown showing along a 070 %85 °SE and 101 %74 °S trending quartz vein and stringer zone with mineralized veins, up to 60 cm wide occurring over a distance of 70m. Mineralization consists of tetrahedrite-freibergite, chalcopyrite, malachite, azurite, molybdenite, pyrite, sphalerite and galena. The highest grades come from material along the northern hangingwall of the 2.5m vein/shear system exposed by the adit. A chip sample, also from vein material, assayed 8.6 g/t Au and 315.38 g/t Ag (*BC Minfile, 2010*). Grab sample MMI89-59-2A assayed 347 g/t Ag, 17.9 g/t Au, 2.62% Pb, 0.56% Cu, and 1.0% Zn (*BC Minfile, 2010*).

The Anyox-Rodeo showing consists of massive sulphide lens hosted by chloriteactinolite schist of the Boundary ranges near its contact with Upper Triassic Stuhini volcanic rocks. Pentlandite, pyrrhotite, chalcopyrite and pyrite occur as fracture fillings and interstially. The showing may be an example of basaltic copper or marine volcanic association *(BC Minfile, 2010)*. A sample taken by the British Columbia Geological Survey assayed 0.15% Cu, 0.60% Ni and 0.12% Co *(BC Minfile, 2010)*.

The Tagish Lake Project has been subdivided into five prospective gold-silver zones: Wann River, Edgar-Nelson Lakes - Llewellyn Fault Zone Extension, Engineer, Mt Switzer - Ben My Chree Zone and the Torres-Graham-Golden Gate Zone (*Figures 2 to 7*). Work on the Project has concentrated on the Wann River area, which occurs along the Llewellyn Fault Zone (*Figure 3*). The following detailed discussion of mineralization in the Wann River area is summarized from Aspinall (2010).

Although the Engineer Gold Mine system is recognized as being distally associated with the Llewellyn Fault Zone, mineralized zones in the Wann River area, 4 kilometres south of the historic Engineer gold mine, are directly related to the Llewellyn Fault Zone.

The 800 by 180m corridor within the Wann River area consists of a multi-pulse, and polymetallic mineralized quartz veined system with tetrahedite, chalcopyrite, galena, sphalerite, malachite, azurite, trace molybdenite, variable pyrite and associated trace arsenic, with associated gold and silver. Three types of mineralization are recognized:

- 1. Uncrowded quartz vein stockworks in biotite-feldspar-quartz schist (DTBG), open to the southeast. To the northwest the system trends under Tagish Lake.
- 2. Quartz vein systems up to 80 cm thick traced for 90m and open along strike, hosted by Upper Triassic Stuhini andesite (UTSV).
- 3. Shear zone hosted, crowded quartz vein stockworks with a 2m wide core, now projected for 130m and still open to the northwest. To the southeast the shear is cut off by an assumed displacement. Host rock is a quartz-eye porphyry believed to be part of the Cretaceous diorite unit (KD).

Outcrops within the 800 by 180m corridor within the Wann River Project are currently limited to seven, all of which host anomalous amounts of gold and silver and variable copper, lead and zinc (*Figure 13*). The seven outcrops include:

- 1. Lum #1 (trenches 1 and 2): A 1600 square metre mineralized outcrop of biotiteplagioclase-quartz-schist, with cleavage striking 160 %40 °SW, along the southeast shore of Tagish Lake is cut by a weak quartz stockwork. Mineralization includes chalcopyrite-galena-sphalerite-malachite-pyrite. Best returns from quartz dump tailings returned 263 g/t Au, 1350 g/t Ag, 2.75% Cu, 4.45% Pb and 1.36% Zn. Extensions of this outcrop area extend 300m to the southeast and are not mineralized.
- 2. Trail Showing: Two sections of a composite quartz vein up to 80 cm wide occur near an old trail on the southwest bank of the Wann River, 720m southeast from the Lum #1 & Lum #2 trenches within the corridor. The vein trends 140 %48 SW, within Upper Triassic Stuhini Group andesites (UTSV) with pyrite along contact selvages with the quartz veins. Mineralization includes tetrahedrite, galena, malachite, and trace arsenopyrite and molybdenite. Best assays to date returned 52.1 g/t Au, 746 g/t Ag, 1.79 % Cu, 5.76% Pb, and 1.04% Zn.
- 3. River Showing: An 80 cm wide composite quartz vein outcrop, hosted by Upper Triassic Stuhini andesite, (UTSV) occurs on the Wann River bank, 800m southeast of the Lum trenches and 60m southeast of the Trail showing. Mineralization includes tetrahedrite on hanging and footwall of the quartz vein with pyritized wallrock along the vein contact. Best grab sample from the footwall of the vein returned 126 g/t Ag.
- 4. Brown (Adit) Showing: A quartz vein zone is exposed with a 110° trending, nearvertical, 2m wide quartz core within a 10m wide shear zone, 710m southeast of Lum#1 and #2 showings. Mineralization consists of tetrahedrite-sphalerite-

arsenopyrite-malachite-azurite. Best assays from two Minfile records are 94.27 g/t Au, 1227.22 g/t Ag and 17.9 g/t Au, 347 g/t Ag, 0.56 % Cu, 2.62% Pb, 1% Zn from grab samples. The host rock is an altered quartz eye feldspar porphyry, within an area mapped as Cretaceous diorite (KD).

- 5. Dutch showing: A quartz vein 80 cm wide, striking 157 %80 NW, now exposed for 25m by a recent hand-excavated trench, was discovered after quartz fragments were noted on surface by geologist Ian Coster while cutting a walking trail in 2010. The location is 650m southeast of the Lum trenches. Mineralization consists of tetrahedrite-chalcopyrite-galena-malachite. Two chip samples were collected with maximum results of 3.40 g/t Au and 320 g/t Ag.
- 6. Newfie Showing: A quartz veinlet stockwork in quartz eye porphyry, (tentatively a unit of Cretaceous diorite, KD) located 650m southeast of the Lum trenches, 50m northeast of the Dutch Vein and 130m northwest of the Brown (Adit) showing. This showing consists of two adjacent previously hand excavated pits, rediscovered by prospector John Dicks and Aspinall. This showing has been reclaimed by an estimated 70-80 years of forest vegetation, and old workings are not immediately recognizable. Present exposures were hand cleared. Two grab samples were collected with maximum values of 15.9 g/t Au and 440 g/t Ag.
- 7. Spanish Showing: Quartz veins up to 20 cm wide, with traces of chalcopyrite, malachite and galena.

10.0 EXPLORATION (Figures 14-17)

Blind Creek Resources Limited initiated acquisition in the Tagish Lake area in 2004, continuing into 2010. Exploration has been conducted on the claims from 2005 to present and has included prospecting, mapping, geochemical reconnaissance, a limited Mobile Metal Ion (MMI) geochemical survey and a reconnaissance magnetic geophysics survey.

10.1 Geochemistry

A total of 293 geochemical samples are documented from the Tagish Lake Project by Blind Creek Resources Limited between 2005 and 2010 *(Aspinall, 2010)*. The 2009 and 2010 samples are from the Wann River area.

	IUN														
Year	Soil	Silt	MMI Soil	Rock	Total	Area									
2005	4	8		6	18	Engineer									
2006	1			37	38	Mt. Switzer, etc.									
2007			30		30	Engineer									
2008	1	21		22	44	Mt. Switzer, Wann R.									
2009	11	2		7	20	Wann River									
2010	56			87	143	Wann River									
Totals	73	31	30	159	293										

 Table 2: Sample Summary, Tagish Lake Project

Limited sampling east of the Engineer Mine in 2005 did not return significant results (Aspinall, 2006).

The Douglas showing (*Figure 10*), discovered by Blind Creek Resources Limited in 2006 south of Mt Switzer, returned a maximum value of 0.6 g/t Au, 11 Ag, 0.19% Cu, 0.69% Pb and 0.41% Zn from one of five parallel 330° trending quartz-sulphide veins (*Justason and Davies, 2007*). Vein widths range from 5 to 12 cm wide, and one vein was traced for 330m (*British Columbia Minfile, 2010*).

A 30(?) sample MMI soil survey appears to have been conducted over the Engineer portion of the Tagish Lake Project in 2007 (*Mark, 2008*). It appears that the survey indicated elevated gold at approximately 6593841mN, 543425 and 543525mE from the Gleaner prospect area. MMI refers to mobile metal ions, which move in the weathering zone and are weakly or loosely attached to surface soil particles. MMI can be useful in detecting mineralization at depth and is not affected by glacial till.

The following discussion of the geochemistry is primarily summarized from Aspinall (2010).

A geochemical reconnaissance sampling program in the regions of Wann River and Mount Switzer in 2008 confirmed the anomalous results from the Anyox-Rodeo showing *(Aspinall, 2008)* sampled in 1998 by the British Columbia Geological Survey *(Mihalynuk, 1999)*. A grab sample from a 10 cm wide massive pyrrhotite vein at the head of the pit indicated anomalous values in gold (110 ppb), silver-arsenic-copper (6714 ppm), platinum (140 ppb), palladium (200 ppb), cobalt (1093 ppm) and nickel (4118 ppm).

In 2009, twenty soil, silt, outcrop and float rock samples were collected, from the banks of the Wann River and adjacent areas by Tagish Lake *(Aspinall, 2009a)*. Significant results are tabulated below.

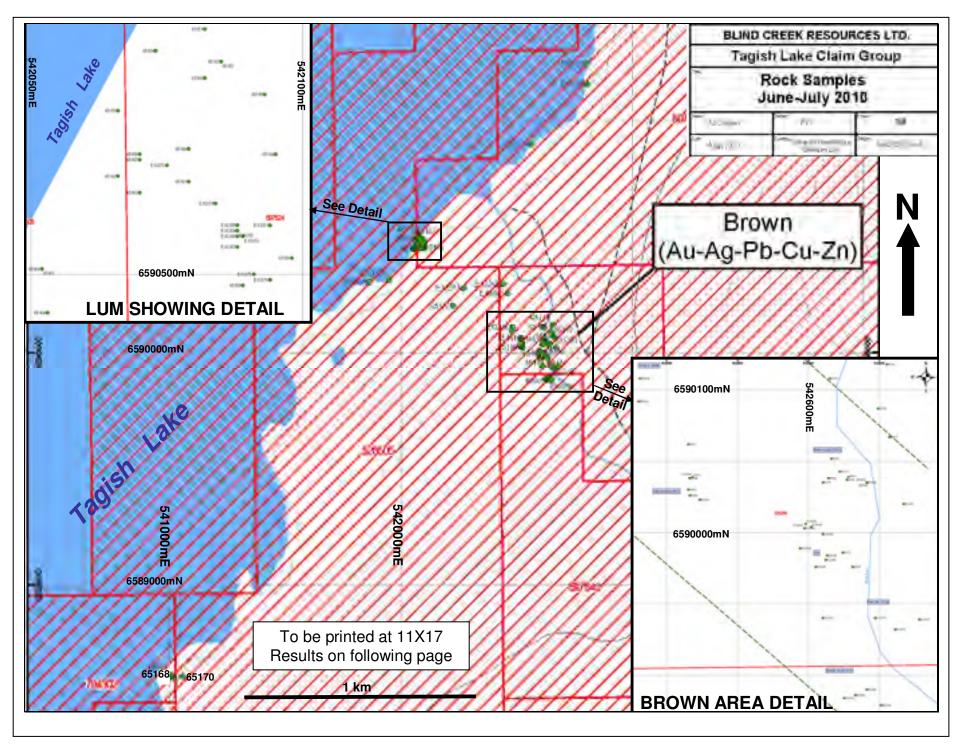

Sample Number	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)	Remarks
9BCRWR02RF	18.8	226	3.05	2.22	quartz float, chalcopyrite
9BCRWR05R	43.5	296	4.30		trace azurite, galena in outcrop

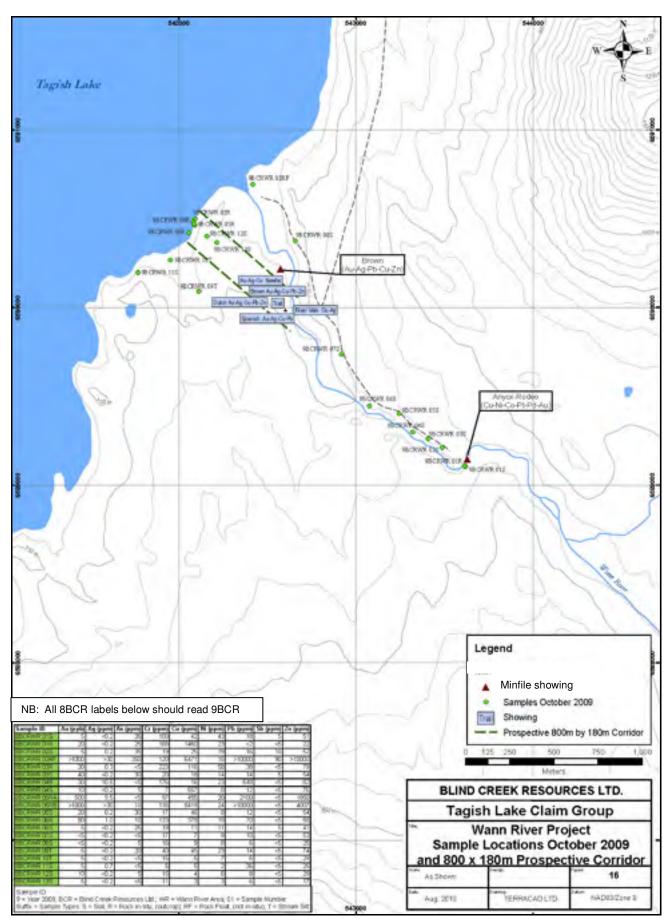
Table 3: Significant results Wann River Area, 2009

Sample 9BCRWR02RF is a float sample found near an existing log cabin with other mineralized quartz material, and could have come from anywhere in the southern Tagish Lake area. Sample 9BCRWR05R was collected from old trenches into bedrock along the southern shore of Tagish Lake, 180m west of the Wann River delta and initiated the present interest in the Wann River area. (*Aspinall, 2009a*).

Sample	Analysis			Ass		Rock samples				
ID	Au	Au	Au 2	Ag	Ag 2	Cu	Pb	Zn	Мо	over 800m strike
	ppb	(g/t)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	(%)	Location
E 83351	>1000	245	263	1360	1350	4.15	3.46			Lum#2 Trench dump
E 83352	>1000	256	259	1200	1065	2.75	4.45	1.36		Lum#2 Trench dump
E 83353	>1000	25.5		154	149					Lum#2 Trench dump
E 83355	>1000	157	149.5	630	639	2.91	4.75	1.94		Lum#2 Trench dump
E 83356	>1000	55		384	381	2.65	1.74			Lum#2 Trench dump
E 83358	>1000	52.1		746	788	1.79	5.76	1.04		Lum#1 Trench dump
E 83359	>1000	8.29		424	448					Trail Vein float
E 83362	>1000	32.9	30.3	1180	3010	3.35	3.79			Trail Vein float
E 83363				62.3	55.5		1.19			Trail Vein float
E 83365	>1000	2.5		62.3						Brown Adit grab
E83370	415			126						River Vein, footwall
E 83373	>1000	3.2								Lum #1 Trench dump
E83384	>1000	3.4		320						Dutch Vein chip/80 cm
E83386	>1000	1.2		184						Trail Vein chip/80 cm
E83395	>1000	15.9		440			1.04			Newfie Vein grab
E83396	>1000	5.2		116						Newfie Vein grab
65154	135			18.8					0.3	Lum #1 grab
65157	>1000	20.3								Lum #1 grab
65171	>1000	17.2								Trail Vein grab
All analyses, unless otherwise indicated, were performed by Eco Tech (Stewart Group)										
Au 1,	Au 1, Ag 1 Eco Tech (Stewart Group) Assay									
Au 2,	Au 2, Ag 2 ALS-Chemex Assay									

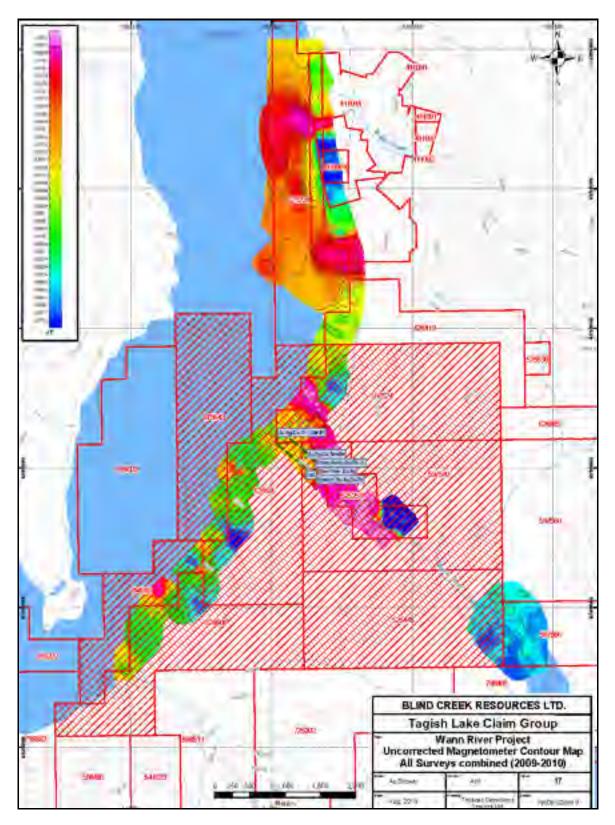
Table 4: Significant 2010 sample results

Read in the late	in each	to in some	A la second	Co. in co.	Color and Co	Contra contra	All in some	Ji i ig		Ph. in com	3	Bata
Sample ID A				Co in ppm		Cu in ppm	Mo in ppm	Ni in ppm				
E 83351	>1000	>30	20	20	110	>10000	9	60	>10000		9632	2010
E 83352	>1000	>30	20	17	116	>10000	10		>10000		>10000	2010
E 83353	≻1000	≻30	<5	10	136	9054	3	31	3954	+5	2178	2010
E 83354	3.20	3.7	<	22	76	300	<1	19	153	<5	78	2010
E 83355	>1000	>30	5	10	84	>10000	1	23	>10000	<5	>10000	2010
E 83358	>1000	>30	5	6	138	>10000	15	16			3354	2010
E 83357	635	6.0		5	442	894	4	13			98	2010
E 83358	>1000	>30	435		180	>10000	440	27		96	>10000	2010
				6			112					
E 83359	>1000	>30	400	5	180	7066	8				5702	2010
E 83360	410	>30	275	1	210	1428	40				2012	2010
E 83361	580	16.6	55	1	194	538	9	10	2296	30	3222	2010
E 83362	>1000	>30	2945	1	196	>10000	4	4	>10000	>10000	8212	2010
C8220 3	200	>30	15	1	440	150	2	11	>10000	105	248	2010
E 83364	25	<0.2		32	516	40	6				130	2010
E 83365	>1000	>30	195	3	226	1964		12			9412	2010
		5.0					4					
E 03366	215		60		204	792	1	12			4455	2010
E 83367	30	0.5	4	18	208	96	2	35			66	2010
E 83368	60	17.8	<5	4	238	30	113	13			218	2010
E 03369	30	<0.2	-5	22	178	102	2	53	12	-5	78	2010
E 83370	415	>30	20	1	246	138	38	11	7680	55	1844	2010
E 83371	145	29.1	160	16	150	1154	3	55			324	2010
E 65572	25	0.6		27	64	566	69				108	2010
						2306						
E 83373	>1000	22.3	4	3	164		<	12		<0	124	2010
E 83374	545	8.8	<5	5	180	640	1	16			972	2010
E 83575	415	2.1	-5	- 4	236	22	1	12			28	2010
E 83376	145	2.0	4	5	208	112	4	12	168	<5	49	2010
E 83377	30	<0.2	<5	5	104	22	<1	8			10	2010
E 83578	20	3.7	5	20	50	550		17			88	2010
E83379	30	11.4	र्द	्त	228	14	6				340	2010
E83380	25		280	17		24	<1	37				2010
		<0.2			110						28	
E83381	25	-0.2	65	12	30	74		5			224	2010
E83382	155	1.4	15	2	124	34	<	4			114	2010
E83383	70	>30	<5	2	232	42	42	10		15	478	2010
E83384	►1000	+30	370	4	220	5200	6			3950	988	2010
E83385	465	23.1	50	2	232	404	17	10	858	80	422	2010
E83386	>1000	>30	365	2	244	2298	42	9			1118	2010
E83387	35	2.8	5	18	138	432	51	33			188	2010
687298	160	4.9	15	16	130	278	214	34			\$30	2010
E83389	45	0.3	5	5		58	62	7	24		98	2010
E83390	165	2.2	10	1	152	32	402	7	81		90	2010
E83391	20	0.2	-5	3	118	48		5	15	<5	28	2010
E83392	80	7.2	10	18	152	588	405	20	492	<5	154	2010
E83393	225	2.2	15	8	80	20	34	11	54		70	2010
E83394		2.4		23	92	448	167	16			90	2010
	1000		255									
E83395	>1000	>30		<1	170	5668	2	1			2818	2010
E83396	>1000	>30	100	3	142	2656	6				618	2010
85151	10	2.6	- 4	11	300	0	60	07			58	2010
65152	20	17.8	~5	3	224	8	95	25	1002	<5	96	2010
85153	20	2.9	-5	8	230	- 4	358	67		45	44	2010
85154	135	18.0	-5	2	206	6	3077	52	1092	-5	58	2010
65155	420	1.6	-5		190	42	6	14			16	2010
65156	- 25	0.2					10					2010
				6			10				12	
65157	>1000	>30	4	5	174	6516	2	- 19			1494	2010
65158	200	2.3	4	5		154	9				110	2010
85150	75	0.7	<5	31	214	108	7	74			112	2010
85160	15	+0.2	-5	2	174	6	2	6	3	5	- 4	2010
65161	10	<0.2	-5	14	68	40	2	19			42	2010
85182	10	<0.2	-5	13	174	16	52	19			8	2010
65163	5	0.3		35	45	410		28			48	2010
11111	10	5.9	2.5	15	187	201			54			2010
85185	10	2.1	10	16	182	2094	0	1.0			120	
	5	<0.2	-5	40	334	156	218					2010
85188	65	1.9	-5		192	14	6				122	2010
65167	50	0.16	- 68	166	58		0.02				944	2010
85188	5	0.04	6	182	2	0.25	0.01	<10	<0.01		<2	2010
65169	5	0.50	16	124	12	0.77	0.08				10	2010
65170	र्द	<0.2	4	<1	174		<1					2010
65171	>1000	>30	1290	1	180		55				3974	2010
85172	590	+30	190	-	172	660	50				2698	2010
65173	10	1.9	4	5	174		4				16	2010
65174	15	0.6	-5	6			9				30	2010
85175	15	0.5	-5	4	12	12	2				14	2010
65176	10	0.2	- 4	5		14	50				12	2010
65177	10	0.2	5	13	102	114	46	23	15		72	2010
85178	15	0.4	10	20	100		45				68	2010
65179	15	0.2	-5	1	82		12					2010
			10				23	24				
65180	65	2.9		10							614	2010
85181	96	1.3	15	8	64		67				568	2010
65182	40	0.3	4	6	64		13				58	2010
	30	>30	<5	13	406		13	133			1036	2010
65183		22.7	-5	7	194	12	14				90	2010
65183	104			33							156	2010
65183 65184	15	A 51					24					
65183 65184 65185	10	0.2										
65183 65184 65185 65186	10	28.8	-5	. 4	250						1214	2010
85183 85184 85185 85186 85187	10 15 75	28.8	-5	2	222	452	16	9	1533	390	228	2010
65183 65184 65185 65186 65186 85187 65188	10	28.8 >30 >30	-5	4			16	9	1533 7877	390		
85183 85184 85185 85186 85187	10 15 75	28.8	-5	2	222	452	16	9	1533 7877	390 3650	228	2010
65183 65184 65185 65186 65186 85187 65188	10 15 75 >1000	28.8 >30 >30	-5 35 515	2	222 194 220	452 4992	16 9 7	9 10 8	1533 7877 432	390 3650 25	228 1422 16	2010 2010


2010 Rock Sample Results for Figure 14

542500 543000 Legend Ν Ν WR DA1S **DOWNARD** WR 10A2S **Minfile Showing** 697624 Lake 2010 Sol Sample 1 WR 10A 4S 2010 Till Sample . 6591000mN WR 10A 35.4 Tra Showing WR 10A 55 A WR 10A 6S Prospective 900m by 180m Comdor 543000mE WR 10A7S **Claim Boundary** See Detail R 25m ALL IN 697524 ALLAD CULZT LUM#1 toBRN40S 108RN395 Tagish Ν TOBRINGT TIL 542650mE Encurt Au-Ap Cu-Pb-2h Brown STRANSIS WE HAR WE HATS 10BRN02TH (Au-Ag-Pb-Cu-Zn -An-Ap-Co-To LUMPI 10BRN345 10BRN375 10BRN355 10Brn335 WINKE 1_ 108RN03TIL Istel States Carbon C NUMBER OF STREET See Detail THERMAN 10BRN05SOL 11111111 and the second 6590000mN 10880218 542000mE 11.88100.50 108RN65DL HERNEYS Au-Ap-Cu NewFig 1 4 RATES MERNE 100RN135 Brown Au Ap-Cu-Rt-Zn 61 NORMAN CAMPANES Ready 1 10 1128 (2015) HERCE SPINIS 1038N#23 1088N10SOL TIERLEAS DALA AU AN CUPU 21 8 INGO TOERAN SOUTHER DIE 108FN085Ow 6590000mN BLIND CREEK RESOURCES LTD. 108RN07504 M 25 Trial IDER MARCON From Very Do-Ag New Res of The Wat (SOM) 108RN085014 Tagish Lake Claim Group Spanish Au Ao Cu Pb Form Welt Clarks 6589500mN Wann River Project 1088N11SOM IOWRAGE Soil and Till Samples June-July 2010 100.000 14 SERVICE C 10WRA105 15 10WRA11S 511500 NAME AND 10MRA1254

33


2010 Soil and Till Sample Results for Figure 15

							ampie	11000							
Sample ID	Easting	Northing	Date	Bev_m			Ag_ppm				Cu_ppm			Sb_ppm	
10B/RN01TIL	542579	6590065	2010	608.2	108RN01 Till	20	< 0.2	25	11		40	22	21	10	74
10BRN02TIL	542588	6590048	2010	687.2	10BRN02 Till	30	<0.2	25	10		52	23	18	10	68
10BRN03TIL	542601	6590032	2010	687.9	10BRN03 TII	15	<0.2	15	8	28	36	18	12	<5	50
10BF0ND4TIL	542599	6590003	2010	693.2	10BRN04 Soll	15	<0.2	15	7	18	58	12	15	5	40
10BRN05SOL	542598	6590002	2010	687.2	10BRN05 Soll	35	0.2	25	17	36	188	29	21	5	66
10BRNESOL	542609	6589988	2010	687.7	10ERN06 Soll	330	>30	60	44	34	1014	63	2205	45	1204
10BRN07S OF	542595	6589963	2010	685.3	10BRN07 Soll	110	4.9	30	72	128	1594	105	216	20	224
10BRN08S OF	542617	6589957	2010	690.1	10BRN08 Soll	25	0.4	25	49	150	738	66	48	5	94
10B/RN095-01	542625	6589968	2010	686.5	10BRN09 Soll	25	<0.2	15	16		144	24	24	<5	70
10ERN10S OF	542629			689.4		35		20	37	66	538	60	138	5	142
10BRN115O	642691	6589948	2010	696.4	10BRN11 Soll	70	3.3	30	60	168	1056	101	204	20	195
WINKE 1	542564	6590035	2010	689.1		30	0.5	15	18	72	298	45	51	<5	252
108/012S	542508	6590053	2010	661.3	108RN12S	105	2.3	30	15		200	51	168	50	124
10BRN13S	542576	6590055	2010	691.3	10BRN13S	3	<0.2	10	10		46	15	45	<5	74
			_	695.9	108RN14S	25	0.9	20	17	30	356	10	114		78
108/RN14S	542630		2010	682.4		4	<0.9							5	54
10BRN15S	542696	6589821	2010		10BRN15S			10	6		20	9	12		
10BRN16S	542072	6590331	2010	666.8	10BRN16S	0	<0.2	<5	2			5	6	<5	22
10BRN17S	542137	6590299	2010	680.3	108RN17S	0	0.2	10	7		20	10	18	<5	60
10BRN18S	542195	6590276	2010	688.4	10BRN18S	4	0.2	<5	6		10	28	21	<5	58
10BRN19S	642222	6590224	2010	694.9	10BRN19S	4	<0.2	10	7	28	12	16	15	10	42
10BRN20S	542251	6590170	2010	696.4	108RN205	0	<0.2	4	4		4	6	9	<5	48
10BRN21S	542255	6590116	2010	699.7	108RN21S	15	<0.2	<5	4	20	4	7	12	<5	58
10BRN22S	542265	6590069	2010	701.6	10BRN22S	4	<0.2	<5	3		4	5	9	<5	48
108/RN23S	542310		2010	706.4	108RN23S	0		<5	2		2	4	9	4	30
10BRN24S	542351	6590022	2010	704	10BRN24S	4	<0.2	<5	3		4	5	9	<	38
10BRN25S	542410	6590006	2010	703.6	10B/RN25S	4	<0.2	<5	4		4	6	9	<5	48
108/RN26S	542451	6590057	2010	702.4	108RN26S	5	<0.2	5	6		6	10	15	<\$	74
10BRN27S	542539	6590100	2010	693.2	108RN27S	\$	0.2	20	11	54	22	19	21	<5	90
108/RN28S	542517	6590140	2010	695.2	108RN28S	4	<0.2	35	9	40	28	17	24	5	76
10BF0\29S	542456	6590187	2010	687.2	108RN29S	4	<0.2	20	4		12	11	18	<5	82
10BRN30S	542436	6590259	2010	689.4	108RN30S	4	<0.2	5	6	26	10	12	12	<5	54
10BRN31S	542271	6590379	2010	681.2	108RN31S	40	<0.2	10	5		14	10	18	<5	92
106RN32S	542269	6590275	2010	690.1	108RN32S	15	0.2	5	22	32	58	19	36	<5	130
10Bm33S	542678	6590032	2010	675.7	10BRN33S	4	<0.2	10	8	4	120	4	21	<5	34
10BRN34S	542679	6590032	2010	675.7	108RN34S	4	<0.2	10	7	<2	90	3	24	<5	30
108F0N35S	542679	6590032	2010	675.7	108RN35S		<0.2	10	9	16	54	14	15	<5	50
10BRN36S	542679	6590032	2010	675.7	108RN36S		0.3	15	31	102	442	48	21	<5	82
108/W37S	542682	6590033	2010	675.7	108RN37S	-3	<0.2	5	9	6	144	8	9	<5	38
106/RN38S	542672	6590052	2010	675.4	108RN38S	9	<0.2	5	19	24	120	43	18	<5	70
10BRN39S	542670	6590078	2010	676.6	108RN39S	4	< 0.2	10	5	16	12	9	9		32
108F0440S	542681	6590081	2010	683.6	108RN40S	-3	<0.2	10	12	24	128	17	12	<5	44
WR 10A 1S	542078	6590473	2010	657.2	WR 10A 1S	1000	5.7	10	70	26	1126	25	116	<5	90
WR 10A 2S	542084	6590467	2010	657.7	WR 10A 2S	145	1.2	<5	42	152	346	63	102	<5	196
WR 10A 3S	542087	6590456	2010	661.5	WR 10A 3S	140	1.2	5	58	184	616	80	105	5	176
WR 10A 4S	542089	6590457	2010	660.8	WR 10A 4S	465	6.7	10	36	50	496	31	270	<5	146
WR 104 55	542087	6590454	2010	663.4	WR 10A 5S	245	2.8	10	72	46	676	42	240	<5	174
WR 10A 6S	542093	6590449	2010	666.0		45	1.3	5	36	96	112	40	126	<5	132
WR 104 75	542092	6590446	2010	667.5	WR 10A 7S	20	0.6	5	34	102	48	41	99	<5	112
10WRA6S	542802	6591150	2010	664.9	10WRA6S	30	0.7	1370	37	68	96	81	51	70	66
10WRA7T	542802	6591213	2010	665.4		40	0.3	45	14	20	60	47	24	15	152
10WRA8S	012002	6071210	2010	000.0		185	3.4	95	87	62	1748	48	153	10	156
10WRA9S	542604	6589941	2010	696.0	10WRA9S	0	<0.2	15	6/		1/40	11	155	10	68
10WRA105	542580		2010	000.0		4	<0.2	20	6		14	13	12	<5	52
10WRA11S	542580	6589928	2010	700.9		4	<0.2	15	6		14	11	12		52
10WRA12S	542626	6589928		691.8		20	2.5	25	31	20	644	21	252	10	90
10WRA13S	542480			691.0		24	3.2	25	31	14	44	5	294	10	198
10WP0A135	542480	6530032	2010	0	10WHA13S	30	3.2	25	3	14	44	5	264	5	198

10.2 Geophysics

Magnetic geophysical surveys were carried out along Tagish Lake in the winters of 2009 (off-shore of the Engineer Mine) and 2010 (in the Wann River area), delineating a geologically complex environment (*Aspinall, 2009b and 2010*). (*Refer to Figure 17*).

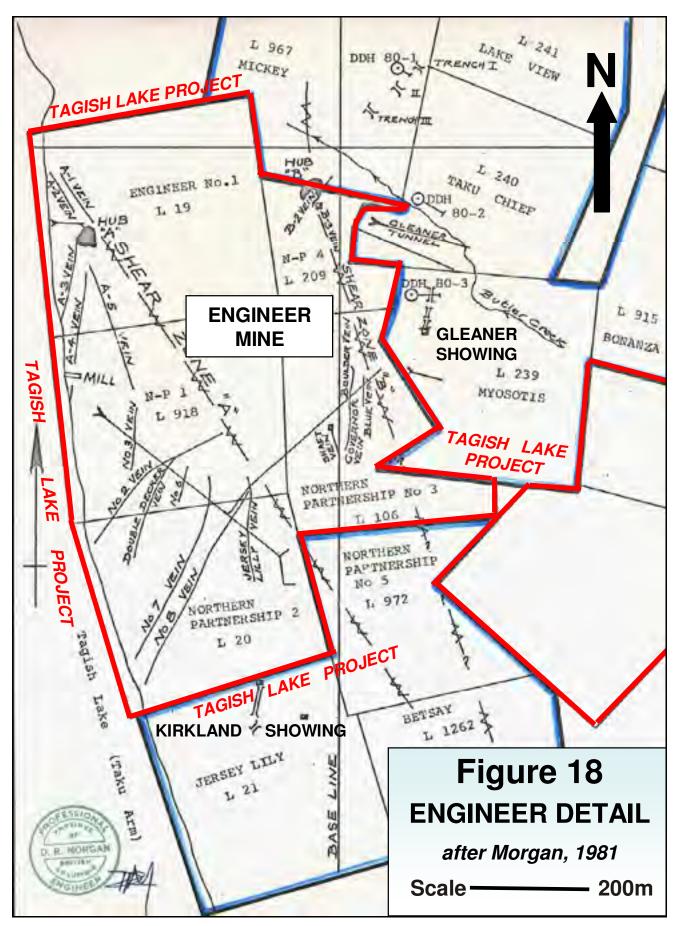
11.0 DRILLING

No drilling has been conducted on the Tagish Lake Project by Blind Creek Resources Limited. However, three drillholes are documented on the Gleaner prospect area of the Engineer Project and there is evidence of previous drilling within the 800m by 180m corridor on the Wann River Project.

A total of 306m in 3 holes of BQ diamond drilling was undertaken on the Gleaner showing by Windarra Minerals Limited under option from Mr. K. Lumsden (*Figure 18*). Maximum results of 1.0 g/t Au, 8.7 g/t Ag over 11.7m, including 2.1 g/t Au, 44.6 g/t Ag over 1.7m were obtained from quartz vein and argillite breccia in DDH 80-1 testing the extension of the B2 vein (*Morgan, 1981*).

Three Winkie drill set ups, estimated to be at least 25-30 years old, were discovered in the Wann River area by Blind Creek Resources Limited. No core, results or record of the drill program could be located. Drill hole locations are tabulated below.

Hole Designation	Nad 83 Northing	Zone 8 Easting	Elev. (ft)	Target
DDH 1	6590032	542566	2283	NW extent of Brown Vein
DDH 2	6589975	542574	2278	River Vein and Brown Adit
DDH 3	6589930	542610	2319	River Vein and possible SE extent of Brown Vein


 Table 5: Wann River diamond drillhole locations

12.0 SAMPLING METHOD AND APPROACH

The 2005, 2008, 2009 and 2010 programs were carried out by or under the direction of Clive Aspinall, P.Eng., a qualified professional in the industry *(Aspinall, 2006, 2008-2010)*. The 2006 program was completed by competent personnel with whom the author has previous experience *(Justason and Davies, 2007)*. Two samples were collected from the Brown adit by the author in 2010.

Rock samples generally consisted of grab samples of mineralized and altered zones, exposed as subcrop, outcrop and float. It should be noted that there is extremely poor exposure on the property. Samples were located and recorded by GPS in the field using UTM coordinates, Nad 83 datum, Zone 8 projection, placed in clear plastic sample bags, numbered and secured in the field. Sample locations and select results are plotted on Figures 14 to 16 and Plates 1-3. Complete results are contained in the respective yearly reports listed in section 21.0, "References" (Aspinall, 2006, 2008 to 2010 and Justason and Davies, 2007).

All samples were analyzed by Eco Tech Laboratory Ltd. (Alex Stewart Geochemical), Kamloops, British Columbia for Al, Sb, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe, La, Pb, Mg, Mn, Mo, Na, Ni, P, Ag, Sr, Ti, Sn, W, U, V, Y and Zn using a 28 element inductively coupled plasma spectroscopy (ICP) package which involves a nitric-aqua regia digestion. Gold was analyzed by fire assay with an atomic absorption finish. Overlimit results were completed for gold by fire assay. Four rock samples were re-analysed for gold, platinum and palladium. Sample procedures are outlined in Appendix II. Eco Tech is an ISO 9001 accredited facility, registration number CDN 52172-07.

13.0 SAMPLE PREPARATION AND SECURITY

All 2008 to 2010 samples were kept in the custody of Clive Aspinall until delivered to the sample preparation laboratory of Eco Tech Laboratory in Whitehorse for preparation *(Aspinall, 2010)* and then internally sent directly to Kamloops, British Columbia for analysis. The two samples collected by the author in 2010 were personally delivered to the Whitehorse sample preparation laboratory. The 2005 to 2006 samples were directly sent to the Kamloops location. Laboratory sample preparation and analysis procedures are outlined in Appendix III. Quality control procedures were implemented at the laboratory, involving the regular insertion of blanks and standards and repeat analyses of at least 25% of the samples, with re-analyses being performed for one sample in each batch on the original sample prior to splitting (resplit). Sample procedures are outlined in Appendix II.

The following discussion of sample preparation is summarized from Aspinall (2010).

Rock samples were placed in heavy, double-plastic bags, closed with a tie wire and ribbon. Sample numbers were written in waterproof marker on the outside of each sample bag and numbered sample tags were placed inside the bags. Rock and field descriptions, including NAD 83 UTM coordinates were recorded on site in a field note book. A GPS model 76Cx instrument determined locations and sample numbers were also stored in the GPS for later retrieval.

Soil and silt samples were collected in water resistant, kraft paper sample bags. Numbers were written on the outside of each bag, and locations were recorded as outlined above.

A sampling protocol is recommended, involving the routine and regular insertion of blanks, standards and duplicates sent to the primary laboratory, and re-assaying of selected mineralized pulps at a second independent laboratory in the proposed drill program on the project.

14.0 DATA VERIFICATION

Two samples collected from the Brown adit (6590036mN, 542629mE, Nad 83, Zone 8 projection) by the author in 2010 confirmed previous results and verified the presence of significant gold-silver values at the Brown adit in the Wann River portion of the Tagish Lake Project (*Table 5*). A previous chip sample from vein material in the adit assayed 8.6 g/t Au and 315.38 g/t Ag (*BC Minfile, 2010*). Grab sample MMI89-59-2A assayed 347 g/t Ag, 17.9 g/t Au, 2.62% Pb, 0.56% Cu, and 1.0% Zn (*BC Minfile, 2010*). The association of high silver values with significant arsenic, antimony and copper geochemistry suggests the presence of freibergite.

SAMPLE			Au	Ag	As	Sb	Pb	Zn	Cu
NUMBER	TYPE	DESCRIPTION	ppb	ppm	ppm	ppm	ppm	ppm	ppm
ADIT-JP1	0.9m chip	0.9m vein zone with parallel quartz veinlets and central 0.4m wide quartz vein trending 100-110/80S	225	8.4	70	15	336	458	242
ADIT-JP2	0.3m chip	3m 0.3m chip along footwall side of quartz		420	1340	105	1.24	4832	6594

Table 6: Brown Adit sample results

The current geochemical data was verified by sourcing original analytical certificates and digital data. Analytical data quality assurance and quality control was indicated by the favourable reproducibility obtained in laboratory standards, blanks and duplicates. Quality control procedures are discussed under Section 13.0, "Sample Preparation And Security". The geochemical programs between 2005 and 2010 were carried out by qualified personnel. The 2005, 2008, 2009 and 2010 programs were carried out by or under the direction of Clive Aspinall, P.Eng., a qualified professional in the industry.

15.0 ADJACENT PROPERTIES

The Engineer Mine property of BCGold Corp., Vancouver, British Columbia is surrounded by the Engineer portion of the Tagish Lake Project of Blind Creek Resources Limited and lies 4 kilometres north of the Wann River area (*Figure 7*). "The Engineer deposit was found in 1899 and produced 597,176 grams of gold between 1913 and 1932. Native gold, tellurides (probably calaverite), pyrite, and trace allemontite (SbS), arsenopyrite, and needles of berthierite (FeS-Sb₂S₃), which were identified by X-ray analysis, occur in a gangue of quartz, calcite, and mariposite. Good comb-structures. as well as banding and vugs, characterize quartz veins. Host rocks include shales and greywackes of the Laberge Group" (Schroeter, 1986).

Mineralized quartz veins up to 0.9m wide are hosted by a 24m by 3 km long shear zone in Lower Jurassic Laberge greywacke and argillite at the Happy Sullivan (Au, Ag) prospect north of the Engineer area (*Figure 2*). "The Happy Sullivan prospect has a similar mineralogical and geologic setting to that of the Engineer Mine, however, arsenopyrite is locally up to 20 per cent and dendritic crystals of native gold have been found" (*Mihalynuk and Mountjoy, 1990*). Grab sample results include 323.6 g/t Au 226.2 g/t Ag (*Mihalynuk and Mountjoy, 1990*).

The Ben-My-Chree (Au, Ag, Cu, Pb, Zn) past producer is surrounded by the northern portion of the Mt. Switzer-Ben My Chree Zone of Blind Creek Resources Limited (*Figure 5*). Approximately 7 tonnes of ore were produced in 1911 at Ben-My-Chree (Steep), from which 93 grams of gold and 31,103 grams of silver were recovered from quartz and quartz-calcite veins hosted by Cretaceous foliated diorites, which contain up to 4% chalcopyrite, galena and pyrite. A grab sample in 1985 returned 11 g/t Au, 450 Ag, 0.14% Cu, 4.25% Pb and 0.037% Zn (*Schroeter, 1986*).

The mineralization, production and resource information discussed in this section has not been verified by the author and is not necessarily indicative of the mineralization on the Tagish Lake Project which is the subject of this report.

16.0 MINERAL PROCESSING AND METALLURGICAL TESTING

The Tagish Lake Project is at an early exploration stage and no metallurgical testing has been carried out.

17.0 RESOURCE AND MINERAL RESERVE ESTIMATES

There has not been sufficient drilling on the Tagish Lake Project to undertake a resource calculation or to delineate the limits of mineralization in any direction.

18.0 OTHER RELEVANT DATA AND INFORMATION

To the author's knowledge, there is no additional information or explanation necessary to make this technical report understandable and not misleading.

19.0 INTERPRETATION AND CONCLUSIONS

Seven Minfile occurrences are documented on the Tagish Lake Project, the Kim (109.7 g/t Ag, 0.7 g/t Au and 4.0% Cu) and Douglas polymetallic vein showings in the southwestern property area, the epithermal style Kirkland showing and Gleaner prospect near the Engineer Mine, the Graham Creek placer, and upstream extent, in the northern property area, and the Brown polymetallic vein showing and the copper-nickel-platinum-palladium Anyox-Rodeo prospect within the Wann River area.

Mineralization at the Brown showing consists of tetrahedrite-freibergite, chalcopyrite, malachite, azurite, molybdenite, pyrite, sphalerite and galena. A sample collected from the Brown adit by the author in 2010, returning 8.6 g/t Au and 420 g/t Ag over 0.3m, confirmed previous results by the British Columbia Geological Survey from a chip sample (assaying 8.6 g/t Au and 315.38 g/t Ag) and verified the presence of significant gold-silver values on the Wann River portion of the Tagish Lake Project.

Results from grab samples from the Wann River area include 263 g/t Au, 1350 g/t Ag, 2.75% Cu, 4.45% Pb and 1.36% Zn in quartz from tailings in the Lum trenches, and 15.9 g/t Au, 440 g/t Ag, and 1.04% Pb from the Newfie, 17.2 g/t Au from the Trail, including 32.9 g/t Au, 1180 g/t Ag and 3.35% Cu and 3.79% Pb from float, and 126 g/t Ag from the River quartz vein showings.

The Wann River area covers a mineralized vein and shear zone prospect related to the Llewellyn Fault Zone, which has acted as a channelway for passage of mineralized solutions and their deposition. Mineralization is confined to narrow structures ranging from less than 80cm to 2m wide, but locally, the structures may widen into quartz stockworks, with widths up to 40m wide.

Recent work on the Tagish Lake Project has focused on the Wann River area based on the widespread indications of precious and variable base metal mineralization within a prospective 800m by 180m wide corridor, association with the productive Llewellyn Fault Zone, and proximity and similarities to the past producing Engineer Mine. There is excellent exploration potential on the Wann River Project to host precious metal mineralization similar to that of the nearby past producing Engineer Mine. "Sheared and altered (broadly silicified) or quartz veined rocks within and adjacent to the Llewellyn fault zone are known to be anomalous in gold" (*Mihalynuk, 1990*).

There is also excellent exploration potential in the Engineer Project area of the Tagish Lake Project to locate additional epithermal style precious metal mineralization similar to that of the nearby past producing Engineer Mine. More than six epithermal veins are reported from the Kirkland showing and Gleaner prospects Exploration has been hindered due to separate ownership from the Engineer Mine, with the ground previously held by one individual, Mr. Keith Lumsden, since 1971.

Exploration on the Tagish Lake Project has been hampered by lack of exposure, thick overburden cover, variable but generally poor soil profiles, and lack of recent exploration.

20.0 RECOMMENDATIONS AND BUDGET

Based on the widespread indications of precious and variable base metal mineralization within a prospective 800m by 180m wide corridor, association with the Llewellyn Fault Zone, lack of overall exposure, and proximity and similarities to the past producing Engineer Mine, a significant exploration program is recommended on the Wann River portion of the Tagish Lake Project.

An initial 2,000m diamond drill program is recommended in the Wann River area, utilizing a light weight helicopter transported drill capable of drilling NTW size core to a 250m depth, to evaluate the southeastern sector of the corridor. Drill permits are currently in place for this type of program. A ground magnetic geophysical survey is also recommended over the Wann River area to aid in geological mapping due to the paucity of exposure. Most of the core should be split and systematically sampled for gold and ICP. Additional prospecting and sampling can be undertaken at this time on the Wann River portion of the Tagish Lake Project. Approximately \$50,000 of the following budget (5%) is recommended to evaluate the Engineer portion of the project by mapping, prospecting and sampling.

Based on the above recommendations, the following exploration program primarily on the Wann River portion of the Tagish Lake Project with corresponding budget is proposed:

Budget:

Diamond drilling (2,000m @ \$200/m all in)	\$ 400,000
Core Racks	\$ 5,000
Wages (2 geologists, core splitter, cook/FA)	\$ 98,000
Accommodation/camp	\$ 20,000
Groceries & Meals	\$ 10,000
Geochemistry (1,200 rocks @\$40/each, freight)	\$ 50,000
Magnetic survey	\$ 20,000
Field Supplies	\$ 6,000
Rental Equipment/vehicles, ATVs	\$ 35,000
Communications	\$ 5,000
Aviation Support	\$ 175,000
Barge support	\$ 20,000
Public Relations with FN	\$ 25,000
Preparation, report drafting	\$ 40,000
SUBTOTAL	\$ 909,000
Contingency	\$ 91,000
Total	\$1,000,000

Respectfully submitted,

"Signed and Sealed"

"Jean Pautler"

-9.10

Jean Pautler, P.Geo.

Effective Date: July 30, 2010

Signed and Sealed: November 30, 2010

21.0 REFERENCES

- Ashton, A. S., 1982. Report on prospecting of the Happy 1 & 2 & Silgo #2 claims & contained reverted crown grants, Tagish Lake, Atlin Mining Division. Assessment Report 10511.
- Aspinall, N. Clive., 2010. Technical report on the Wann River Project, Blind Creek Resources Ltd. Tagish Lake Group claims, Atlin Mining Division, British Columbia. Report for Blind Creek Resources Ltd.

2009a. Geochemical and Geophysical Report on the Wann River-Engineer Project. British Columbia Assessment Report 31376.

2009b. Orientation magnetometer survey on Tagish Lake, adjacent to Engineer Mine, Atlin Mining Division, British Columbia. Report for Blind Creek Resources Ltd. British Columbia Assessment Report 30759.

2008. Engineer-Mt Switzer Project, Tagish Lake Area, Atlin Mining Division, British Columbia. Report for Blind Creek Resources Ltd. British Columbia Assessment Report 30601.

2006. Geochemical Reconnaissance of the Engineer Mine and Surrounding Area in Tagish Lake, Northwest British Columbia, Atlin Mining Division. Report for Blind Creek Resources Ltd. Assessment Report 28127.

Blind Creek Resources Limited, 2010. Website at http://www.theresourcegroup.ca .

- British Columbia Minfile, 2010. 104M. British Columbia Ministry of Energy, Mines & Petroleum Resources.
- Brooks, R. (undated and un-published). The Engineer Story.
- Brownlee, D.J., 1993. Geological and geophysical on the Lumsden property. British Columbia Assessment Report 23211.
- Cairns, D.D., 1913. Portions of the Atlin District, British Columbia Geological Survey of Canada. Memoir 37.

1910. Portions of the Atlin District, B.C. Sessional Paper 26. Summary Report of the Geological Survey Branch of the Geological Branch. Geological Survey Branch, Dept. of Mines, Ottawa.

Cathro, Robert J., 1968. Geophysical report. magnetic and electromagnetic surveys, of Jackpine (I2360), Wann Fr. No 2, (L4656), Wann Fr. (L4655), Alamo (L4669), Anyox (L4657), Rodeo (L4670), Juanita (L4654) mineral claims, located near the mouth of Wann River, Atlin Mining Division. Report for Idaho Silver Mines Ltd. (NPL). British Columbia Assessment Report 1628.

- Charteris, S.N., 1966. Report on the "AL" Claims, Wann River, British Columbia. Falconbridge File, British Columbia Ministry of Energy, Mines & Petroleum Resources. Available at <u>http://propertyfile.gov.bc.ca/PDFTemp/fileid 2195.pdf</u>.
- Christie, R.L., 1957. Bennett Lake map area. Geological Survey of Canada Map 19-1957.
- Davidson, G.S., 1998. Summary report on the Engineer property, Tagish Lake area., Atlin Mining District.
- Foster, H.D., and Norie I.H., 1981. Prospecting report on Steep Claims. Report for Silver Ice Mining. British Columbia Assessment Report 9133.
- Geological Survey of Canada Annual Reports 1910, 1914.
- Gwilliam, J.C., 1901. Atlin Mining District. Geological Survey of Canada Annual Report 1899, Volume 12.
- Justason, Angelique and Davies, Brad., 2007. Technical report, 2006 reconnaissance exploration program on the Engineer claim group, (Douglas Showing), Atlin Mining Division. Report for Blind Creek Resources Ltd. British Columbia Assessment Report 28934.
- Lefebure, D.V. and Hõy, T., editors, (1996) Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits, British Columbia Ministry of Employment and Investment, Open File 1996-13
- Mark, David G., 2008. Exploration report on MMI soil sampling on the Tagish Lake property, Tagish Lake, Engineer Mine Area, Atlin Mining Division. Report for Blind Creek Resources Ltd. Assessment Report 30275.
- Mark, David G., 2007. Exploration report on grid installation, MMI soil sampling and magnetic surveying on the Llewellyn property, Engineer Mine Area, Tagish Lake, Atlin Mining Division. Assessment Report 29966.
- McDougall, J.J., 1966. Preliminary report on Atlin area prospects, 1965. Falconbridge File, British Columbia Ministry of Energy, Mines & Petroleum Resources. Available at <u>http://propertyfile.gov.bc.ca/PDFTemp/fileid_2212.pdf</u>.
- McLeod, J., 1991. Exploration report Lumsden group of claims. British Columbia Assessment Report 22075.
- Mihalynuk, Mitchell G., 1999. Geology and mineral resources of the Tagish Lake area (NTS 104M/8, 9, 10E, 15 104N/12W), northwestern British Columbia. British Columbia Ministry of Energy, Mines & Petroleum Resources, Bulletin 105.
- Mihalynuk, M.G. and Mountjoy, K.J., 1990. Geology of the Tagish Lake area (NTS 104M/8, 9E. In British Columbia Ministry of Energy, Mines & Petroleum Resources, Geological Fieldwork, 1989. Paper 1990-1.

Minister of Mines, 1918. Annual Report of the Ministry of Mines, British Columbia - 1918, pp.92-93.

1914. Annual Report of the Ministry of Mines, British Columbia - 1914, p.93.

1913. Annual Report of the Ministry of Mines, British Columbia - 1913, p.73.

- Morgan, D.R., 1981. A geological report on the reverted crown grants & located mineral claims of Windarra Minerals Ltd., surrounding the Engineer Gold Mine. British Columbia Assessment Report 9049.
- Panteleyev, A., 1996. Epithermal Au-Ag: low sulphidation. In Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits, Lefebure, D.V. and Hõy, T, Editors, British Columbia Ministry of Employment and Investment, Open File 1996-13, pages 41-44.
- Sawyer Consultants Inc. 1979. Report on the Engineer Mine, Tagish Lake, Atlin Mining Division, British Columbia. Report for NU-Lady Gold Mines Ltd.
- Schroeter, T.G., 1986. Bennett Project 104M. In British Columbia Ministry of Energy, Mines & Petroleum Resources, Geological Fieldwork, 1985. Paper 1986-1.
- Smit, Hans, 1988. Diamond drilling report on the Engineer property, Atlin Mining Division, British Columbia. Report for Erickson Gold Mining Corp. British Columbia Assessment Report 17253.
- Tulley, Donald W., 1979. Report on the Even Star, Sweepstake Nos. 2,3,4, Sweep Stake Nos. 5 Fr, 6 Fr, Polygon Fr., Cracker Jack, Golden Hill, Gold Bullion, and the Happy No. 1 mineral claims, Taku Arm - Tagish Lake, Atlin Mining Division, British Columbia. Report for Nomad Mines Ltd, (NPL). British Columbia Assessment Report 7923, Part 1 of 3.

1979. Report on the Lum #6 - 12 claims, Gold #1, Gold #2, Au #2, Silgo #1 claims, Taku Arm - Tagish Lake, Atlin Mining Division, British Columbia. Report for Gleaner Gold Mines Ltd. British Columbia Assessment Report 7923, Part 2 of 3.

1979. Report On The Lum #1 - 5 claims, Au #1, Aurum #1, Silgo #2, Happy #2 claims, Taku Arm - Tagish Lake, Atlin Mining Division, British Columbia. Report for Tagish Lake Gold Mines Ltd. British Columbia Assessment Report 7923, Part 3 of 3.

Wheeler, J.O., 1952. Geology and mineral deposits of Whitehorse map-area, Yukon Territory. Geological Survey of Canada.

22.0 CERTIFICATE, DATE AND SIGNATURE

- I. Jean Marie Pautler of 103-108 Elliott Street, Whitehorse, Yukon Territory am selfemployed as a consultant geologist, authored and am responsible for all sections of this report entitled "Technical report on the Tagish Lake Project", dated November 30, 2010.
- 2) I am a graduate of Laurentian University. Sudbury, Ontario with an Honours B Sc degree in geology (May, 1980) with 30 years mineral exploration experience in the North American Cordillera. Pertinent experience includes the acquisition and delineation of the Tsacha epithermal gold deposit, British Columbia for Teck Exploration Ltd., experience working on and evaluating epithermal and porphyry prospects and deposits in the North American Cordillera such as the Avino Mine area in Mexico. The Burro Creek Mine area in Arizona, the Grew Creek epithermal gold deposit, the Skukum Creek gold deposit, and the Freegold Project, covering epithermal and porphyry occurrences and deposits, Yukon Territory and regional and initial property work in the Atlin area for J.C. Stephen Explorations Ltd.
- I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia, registration number 19804.
- 4) I have visited the subject mining property of this report and am a "Qualified Person" in the context of and have read and understand National Instrument 43-101 and the Companion Policy to NI 43-101. This report was prepared in compliance with NI 43-101.
- This report is based upon a site visit to the property on July 27, 2010, the author's personal knowledge of the region and a review of pertinent data.
- 6) As stated in this report, in my professional opinion the property is of potential merit and further exploration work is justified.
- To the best of my knowledge this report contains all scientific and technical information required to be disclosed so as not to be misleading.
- B) I am entirely independent of Blind Creek Resources Limited and any associated companies. I do not have any agreement, arrangement or understanding with Blind Creek Resources Limited and any affiliated company to be or become an insider, associate or employee. I do not own securities in Blind Creek Resources Limited or any affiliated companies and my professional relationship is at arm's length as an independent consultant, and I have no expectation that the relationship will change.
- I consent to the use of this report by Blind Creek Resources Limited for such assessment and/or regulatory and financing purposes deemed necessary, but if any part shall be taken as an excerpt, it shall be done only with my approval.

Dated at Carcross, Yukon Territory this 30st day of November, 2010. "Signed and Sealed"

Jean Pautler'

Jean Pautler, P.Geo (APEGBC Reg. No. 19804) JP Exploration Services Inc. #103-108 Elliott St. Whitehorse, Yukon Y1A 6C4

The signed and sealed copy of this Certificate. Date and Signature page has been delivered to Blind Creek Resources Limited.

Owner: Blind Creek Resources Ltd										
Tenure Number	Claim Name	Map Number	Issue Date	Good To Date	Area (ha)					
411090	HOPE 2	104M049	2004/jun/04	2011/may/01	25					
411091	HOPE 3	104M049	2004/jun/04	2011/may/01	25					
411092	HOPE 4	104M049	2004/jun/04	2011/may/01	25					
411093	HOPE 7	104M049	2004/jun/04	2011/may/01	25					
411094	HOPE 1	104M049	2004/jun/04	2011/may/01	450					
503984	ENG	104M	2005/jan/17	2011/may/01	16.44					
521228	HOPE 7	104M	2005/oct/14	2011/may/01	345.28					
525258	WHINE	104M	2006/jan/13	2011/may/01	115.223					
525419	TAGISH #1	104M	2006/jan/14	2011/may/01	197.403					
525445	TAGISH #2	104M	2006/jan/14	2011/may/01	395.235					
525452	TAGISH #3	104M	2006/jan/14	2012/mar/22	163.891					
525536	TAGISH # 3	104M	2006/jan/15	2011/may/01	16.452					
526505	TAGISH 5	104M	2006/jan/27	2011/may/01	362.126					
526506	TAGISH 6	104M	2006/jan/27	2011/may/01	345.866					
526885	CONTIGUOUS	104M	2006/feb/01	2011/may/01	82.28					
541829	GLACIER	104M	2006/sep/21	2011/may/01	412.0467					
542086	DOUGLAS 3	104M	2006/sep/28	2011/may/01	346.2841					
597524	LOWER ENGINEER 1	104M	2009/jan/14	2011/may/01	394.9014					
597540	LOWER ENGINEER 2	104M	2009/jan/14	2011/may/01	411.5329					
597560	LOWER ENGINEER 3	104M	2009/jan/14	2011/may/01	411.5533					
597566	LOWER ENGINEER 4	104M	2009/jan/14	2011/may/01	164.6917					
598495	SOUTH TAGISH	104M	2009/feb/02	2011/may/01	395.5419					
598504	SOUTH TAGISH 2	104M	2009/feb/02	2011/may/01	379.3736					
598513	SOUTH TAGISH 3	104M	2009/feb/02	2011/may/01	345.9858					
598517	EAST ENGINEER 1	104M	2009/feb/02	2011/may/01	395.0259					
598520	SOUTH TAGISH 4	104M	2009/feb/02	2011/may/01	346.5109					
604893	FLORENCE 1	104M	2009/may/23	2012/jul/18	396.0267					
675643	WANN#1	104M	2009/nov/27	2011/may/01	296.1937					
709442	RUPERT #1	104M	2010/feb/28	2011/feb/28	245.7935					
712622	RUPERT #2	104M	2010/mar/04	2011/mar/04	410.4157					
Total					7942.0738					
Tenure Number	Claim Name	Map Number	Issue Date	Good To Date	Area (ha)					
712642	RUPERT#3	104M	2010/mar/04	2011/mar/04	164.4522					
712662	RUPERT #4	104M	2010/mar/04	2011/mar/04	409.9984					
712682	RUPERT#5	104M	2010/mar/04	2011/mar/04	328.1787					
712823	RUPERT#6	104M	2010/mar/04	2011/mar/04	393.3484					
712862	FLORENCE #2	104M	2010/mar/04	2011/mar/04	395.9268					
712883	FLORENCE #3	104M	2010/mar/04	2011/mar/04	395.9696					
717642	FLORENCE # 4	104M	2010/mar/07	2011/mar/07	396.1994					
719062	FLORENCE#5	104M	2010/mar/09	2011/mar/09	412.9059					
719082	FLORENCE#6	104M	2010/mar/09	2011/mar/09	395.8394					
719102	FLORENCE#7	104M	2010/mar/09	2011/mar/09	395.8221					
719122	FLORENCE#8	104M	2010/mar/09	2011/mar/09	395.7863					
719142	FLORENCE#9	104M	2010/mar/09	2011/mar/09	395.7322					
719162	FLORENCE#11	104M	2010/mar/09	2011/mar/09	395.568					
719182	FLORENCE#12	104M	2010/mar/09	2011/mar/09	412.6802					
719202	FLORENCE#13	104M	2010/mar/09	2011/mar/09	396.0894					
719222	FLORENCE#14	104M	2010/mar/09	2011/mar/09	396.0839					

APPENDIX I: Statement of Claims, Tagish Lake Claim Group Owner: Blind Creek Resources Ltd

719242	FLORENCE#15	104M	2010/mar/09	2011/mar/09	396.1049
725202	PROSPECTOR#4	104M	2010/mar/12	2011/mar/12	394.3832
725244	PROSPECTOR#5	104M	2010/mar/12	2011/mar/12	410.8307
725302	FLORENCE #16	104M	2010/mar/12	2011/mar/12	395.373
725723	PROSPECTOR#6	104M	2010/mar/12	2011/mar/12	394.5368
725923	PROSPECTOR#7	104M	2010/mar/12	2011/mar/12	328.7847
726022	PROSPECTOR#8	104M	2010/mar/12	2011/mar/12	411.2091
726123	PROSPECTOR#9	104M	2010/mar/12	2011/mar/12	411.2027
794302	TAGISH LAKE SOUTHWEST	104M	2010/jun/17	2011/jun/17	148.2057
799323	TAGISH LAKE WEST #2	104M	2010/jun/26	2011/jun/26	411.8702
799382	TAGISH LAKE#1	104M	2010/jun/26	2011/jun/26	263.5926
799402	EDGAR LAKE NE#1	104M	2010/jun/26	2011/jun/26	312.9945
799462	MOUNT SWITZER SLOPES #1	104M	, 2010/jun/26	2011/jun/26	395.6568
Totals					10755.3258
Tenure		Мар		Good To	
Number	Claim Name	Number	Issue Date	Date	Area (ha)
819002	WHITE CAPS 1	104M	2010/jul/15	2011/jul/15	378.5439
819222	WHITE CAPS 2	104M	2010/jul/15	2011/jul/15	395.2576
819282	WHITE CAPS 3	104M	2010/jul/15	2011/jul/15	395.4206
819382	SLOPE 1	104M	2010/jul/15	2011/jul/15	412.135
819422	KIM WEST 1	104M	2010/jul/15	2011/jul/15	412.688
819442	KIM NORTHWEST	104M	2010/jul/15	2011/jul/15	247.5047
819542	NELSON 1	104M	2010/jul/15	2011/jul/15	395.8838
819602	BENMYCHREE 1	104M	2010/jul/15	2011/jul/15	395.2999
819622	BENMYCHREE 2	104M	2010/jul/15	2011/jul/15	395.4762
819662	BENMYCHREE 3	104M	2010/jul/15	2011/jul/15	395.6598
819682	BENMYCHREE 4	104M	2010/jul/15	2011/jul/15	394.9657
819702	BENMYCHREE 5	104M	2010/jul/15	2011/jul/15	395.1589
819722	BENMYCHREE 6	104M	2010/jul/15	2011/jul/15	395.3418
819742	BENMYCHREE 7	104M	2010/jul/15	2011/jul/15	395.5155
819762	BENMYCHREE 8	104M	2010/jul/15	2011/jul/15	247.2974
819782	BENMYCHREE 9	104M	2010/jul/16	2011/jul/16	395.2911
819802	BENMYCHREE 10	104M	2010/jul/16	2011/jul/16	32.9647
819822	KIM NORTH	104M	2010/jul/16	2011/jul/16	395.8449
820742	BENMYCHREE 11	104M	2010/jul/17	2011/jul/17	411.3394
820762	BENMYCHREE 12	104M	2010/jul/17	2011/jul/17	411.7545
820782	BENMYCHREE 14	104M	2010/jul/17	2011/jul/17	296.8147
821462	GRAHAM 1	104M	2010/jul/19	2011/jul/19	409.7073
821482	RUPERT #7	104M	2010/jul/19	2011/jul/19	410.0077
821502	RUPERT #8	104M	2010/jul/19	2011/jul/19	410.2556
821522	RUPERT # 9	104M	2010/jul/19	2011/jul/19	410.5328
821542	PROSPECTOR #10	104M	2010/jul/19	2011/jul/19	410.7384
821582	PROSPECTOR #11	104N	2010/jul/19	2011/jul/19	377.8607
821602	PROSPECTOR #12	104N	2010/jul/19	2011/jul/19	394.6536
821622	PROSPECTOR # 14	104N	2010/jul/19	2011/jul/19	411.2113
821922	ATLIN WANN LINK 1	104N	2010/jul/20	2011/jul/20	409.1481
821942	ATLIN WANN LINK 2	104N	2010/jul/20	2011/jul/20	409.2683
821982	ATLIN WANN LINK 3	104M	2010/jul/20	2011/jul/20	409.6463
Totals					12059.1882
Tenure Number	Claim Name	Map Number	Issue Date	Good To Date	Area (ha)
822002	ATLIN WANN LINK 4	104M	2010/jul/20	2011/jul/20	163.8597
822002 822022	PROSPECTOR # 15	104M 104N	2010/jul/20 2010/jul/20	2011/jul/20 2011/jul/20	246.7684
				-	
822202	PROSPECTOR #15	104M	2010/jul/21	2011/jul/21	411.4626

822222	PROSPECTOR #16	104M	2010/jul/21	2011/jul/21	411.7166
822242	PROSPECTOR #17	104M	2010/jul/21	2011/jul/21	411.4542
822262	PROSPECTOR#18	104M	2010/jul/21	2011/jul/21	411.7057
822282	PROSPECTOR #19	104N	2010/jul/21	2011/jul/21	411.4449
822302	PROSPECTOR #20	104N	2010/jul/21	2011/jul/21	411.6946
822322	PROSPECTOR # 21	104N	2010/jul/21	2011/jul/21	411.4381
822342	PROSPECTOR #22	104N	2010/jul/21	2011/jul/21	392.3522
822362	PROSPECTOR #23	104M	2010/jul/21	2011/jul/21	378.9079
822382	PROSPECTOR #24	104N	2010/jul/21	2011/jul/21	411.8653
822402	PLATEAU #1	104M	2010/jul/21	2011/jul/21	411.0071
822442	PLATEAU #2	104M	2010/jul/21	2011/jul/21	411.2611
822462	PLATEAU #3	104M	2010/jul/21	2011/jul/21	411.5148
822642	PLATEAU #4	104M	2010/jul/21	2011/jul/21	411.7592
822662	PLATEAU #5	104M	2010/jul/21	2011/jul/21	410.9578
822723	PLATEAU # 6	104M	2010/jul/21	2011/jul/21	411.2108
822842	PLATEAU #7	104M	2010/jul/21	2011/jul/21	411.4631
822862	PLATEAU #8	104M	2010/jul/21	2011/jul/21	411.7158
822882	PLATEAU #9	104M	2010/jul/21	2011/jul/21	394.5445
822902	PLATEAU #10	104M	2010/jul/21	2011/jul/21	394.8348
822922	PLATEAU # 11	104M	2010/jul/21	2011/jul/21	395.1256
822942	PLATEAU # 12	104M	2010/jul/21	2011/jul/21	395.3838
822962	CAMERON # 1	104M	2010/jul/21	2011/jul/21	412.1479
822982	CAMERON #2	104M	2010/jul/21	2011/jul/21	379.4638
823002	CAMERON # 4	104M	2010/jul/21	2011/jul/21	411.909
823022	CAMERON #3	104M	2010/jul/21	2011/jul/21	313.2796
823082	CAMERON # 5	104M	2010/jul/21	2011/jul/21	361.8939
823102	CAMERON#6	104M	2010/jul/21	2011/jul/21	395.1259
823122	CAMERON #7	104M	2010/jul/21	2011/jul/21	395.3835
Totals					12014.6522
Tenure Number	Claim Name	Map Number	Issue Date	Good To Date	Area (ha)
823142	CAMERON # 8	104M	2010/jul/21	2011/jul/21	164.8258
823182	NELSON 2	104M	2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21	396.0235
823202	GOLDEN GATE #1		2010/jul/21	2011/jui/21	000.0200
823222		104M	2010/jul/21	2011/jul/21	409 5654
OLOLLL		104M 104M	2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21	409.5654 393.4265
823242	GOLDEN GATE #2	104M	2010/jul/21	2011/jul/21	393.4265
823242 823262	GOLDEN GATE #2 GOLDEN GATE #3	104M 104M	2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21	393.4265 278.6008
823262	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4	104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251
823262 823483	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1	104M 104M 104M 104N	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803
823262 823483 823502	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2	104M 104M 104M 104N 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501
823262 823483 823502 823522	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1	104M 104M 104M 104N 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084
823262 823483 823502 823522 823542	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #2	104M 104M 104M 104N 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448
823262 823483 823502 823522 823542 823562	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #2 GRAHAM CR. # 3	104M 104M 104M 104N 104M 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813
823262 823483 823502 823522 823542	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #2 GRAHAM CR. # 3 FETTERLY #3	104M 104M 104M 104N 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448
823262 823483 823502 823522 823542 823562 823562	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #2 GRAHAM CR. # 3	104M 104M 104M 104N 104M 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813 393.3964
823262 823483 823502 823522 823542 823562 823562 823582 823602	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #2 GRAHAM CR. # 3 FETTERLY #3 FETTERLY #4	104M 104M 104N 104N 104M 104M 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813 393.3964 393.5709 393.7593
823262 823483 823502 823522 823542 823562 823582 823602 823602 823622	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #3 FETTERLY #3 FETTERLY #4 FETTERLY #5	104M 104M 104N 104N 104M 104M 104M 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813 393.3964 393.5709
823262 823483 823502 823522 823542 823562 823582 823602 823622 823622 823642	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE #4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #2 GRAHAM CR. # 3 FETTERLY #3 FETTERLY #4 FETTERLY #5 FETTERLY #5	104M 104M 104M 104N 104M 104M 104M 104M 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813 393.3964 393.5709 393.7593 393.8929
823262 823483 823502 823522 823542 823562 823582 823602 823602 823642 823642 823662	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE #4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #2 GRAHAM CR. #3 FETTERLY #3 FETTERLY #4 FETTERLY #5 FETTERLY #5 FETTERLY #6	104M 104M 104M 104N 104M 104M 104M 104M 104M 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813 393.3964 393.5709 393.7593 393.8929 393.7392
823262 823483 823502 823522 823542 823562 823582 823602 823602 823622 823662 823662 823662	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #2 GRAHAM CR. # 3 FETTERLY #3 FETTERLY #4 FETTERLY #5 FETTERLY #5 FETTERLY #6 FETTERLY #7	104M 104M 104N 104M 104M 104M 104M 104M 104M 104M 104M	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813 393.3964 393.5709 393.7593 393.8929 393.7392 393.7392
823262 823483 823502 823522 823542 823562 823602 823602 823622 823642 823662 823682 823682 823702	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #3 FETTERLY #3 FETTERLY #3 FETTERLY #4 FETTERLY #5 FETTERLY #5 FETTERLY #6 FETTERLY #7 FETTERLY #8	104M 104M 104N 104M 104M 104M 104M 104M 104M 104M 104N 104N 104N	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813 393.3964 393.5709 393.7593 393.8929 393.7593 393.8929 393.7392 393.544 393.3653
823262 823483 823502 823522 823542 823562 823682 823622 823622 823642 823662 823662 823682 823702 823702	GOLDEN GATE #2 GOLDEN GATE #3 GOLDEN GATE # 4 FETTERLY #1 FETTERLY #2 GRAHAM CR. #1 GRAHAM CR. #3 FETTERLY #3 FETTERLY #3 FETTERLY #4 FETTERLY #5 FETTERLY #5 FETTERLY #5 FETTERLY #6 FETTERLY #7 FETTERLY #8 FETTERLY #9	104M 104M 104N 104N 104M 104M 104M 104M 104M 104M 104N 104N 104N 104N 104N	2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21 2011/jul/21	393.4265 278.6008 294.8251 394.0803 394.1501 409.5084 409.2448 408.9813 393.3964 393.5709 393.7593 393.8929 393.7392 393.7392 393.544 393.3653 361.146

823802	FETTERLY #14	104M	2010/jul/21	2011/jul/21	394.138
823822	FETTERLY #15	104N	2010/jul/21	2011/jul/21	197.0628
823842	GRAHAM CR. #4	104N	2010/jul/21	2011/jul/21	409.3059
823862	GRAHAM CR.#4	104M	2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21	409.1188
823882	GRAHAM CR. #6	104M	2010/jul/21 2010/jul/21	2011/jul/21 2011/jul/21	
		104M		,	392.5828
823902	BROOKLANDS #1	-	2010/jul/21	2011/jul/21	393.4001
824002	BROOKLANDS #2	104M	2010/jul/22 2010/jul/22	2011/jul/22	393.3893
824023	BROOKLANDS #4	104M	,	2011/jul/22	393.5816
824042	BROOKLANDS #5	104M	2010/jul/22	2011/jul/22	393.7689
824062	BROOKLANDS #6	104M	2010/jul/22	2011/jul/22	<u>393.5796</u> 12022.0064
Tenure Number	Claim Name	Map Number	Issue Date	Good To Date	Area (ha)
824082	BROOKLANDS #7	104M	2010/jul/22	2011/jul/22	393.7687
824162	BROOKLANDS #8	104M	, 2010/jul/22	2011/jul/22	393.4813
824263	BROOKLANDS #9	104M	, 2010/jul/22	2011/jul/22	393.8404
824342	BROOKLANDS # 10	104M	2010/jul/22	2011/jul/22	295.4324
824422	GRAHAM CR.#7	104M	2010/jul/22	2011/jul/22	393.1252
824442	GRAHAM CR. #8	104N	2010/jul/22	2011/jul/22	327.2812
824462	GRAHAM CR. 9	104M	2010/jul/22	2011/jul/22	392.6435
824482	GRAHAM CR. 10	104M	, 2010/jul/22	2011/jul/22	327.4348
824502	GRAHAM CR. #11	104M	, 2010/jul/22	2011/jul/22	262.0995
824522	GRAHAM CR. #12	104M	, 2010/jul/22	2011/jul/22	408.7244
824542	GRAHAM CR. #14	104M	, 2010/jul/22	2011/jul/22	359.4409
824562	DUNDEE #1	104N	, 2010/jul/22	2011/jul/22	408.9289
824582	DUNDEE #2	104N	2010/jul/22	2011/jul/22	409.2403
824602	DUNDEE # 3	104N	2010/jul/22	2011/jul/22	408.786
824622	DUNDEE #4	104N	2010/jul/22	2011/jul/22	392.4006
824642	DUNDEE#5	104N	2010/jul/22	2011/jul/22	392.4011
824942	UPPER GRAHAM CR.1	104M	2010/jul/22	2011/jul/22	327.0015
828102	NAHLIN #1	104M	2010/jul/26	2011/jul/26	375.7916
828122	NAHLIN#2	104M	2010/jul/26	2011/jul/26	326.9974
828142	NAHLIN #3	104M	2010/jul/26	2011/jul/26	408.9677
828162	NAHLIN # 4	104M	2010/jul/26	2011/jul/26	408.7144
828182	NAHLIN#5	104M	2010/jul/26	2011/jul/26	408.4607
828202	HUSSELBEE WEST #1	104M	2010/jul/26	2011/jul/26	359.5906
828222	HUSSELBEE WEST #2	104M	2010/jul/26	2011/jul/26	408.4683
828242	HUSSLEBEE WEST #3	104N	2010/jul/26	2011/jul/26	408.4707
828262	HUSSLEBEE WEST #4	104N	2010/jul/26	2011/jul/26	408.4703
828282	HUSSELBEE WEST#5	104N	2010/jul/26	2011/jul/26	408.4768
828302	HUSSELBEE WEST #6	104N	2010/jul/26	2011/jul/26	310.483
828322	NAHLIN#5	104M	2010/jul/26	2011/jul/26	360.11
829182	NELSON #2	104M	2010/jul/27	2011/jul/27	411.8543
Totals					11290.8865
Tenure Number	Claim Name	Map Number	Issue Date	Good To Date	Area (ha)
829202	NELSON#3	104M	2010/jul/27	2011/jul/27	412.0028
829222	NELSON#4	104M	2010/jul/27	2011/jul/27	412.3333
830422	GRAHAM-WANN LINK #1	Mineral	2010/jul/29	2011/jul/29	147.4037
Totals		Minora	2010/ju//20	2011/j0//20	971.7398
	Total Area	(Her	ctares)		67,055.902

APPENDIX II: Geochemical Procedure

ECO TECH LABORATORY (STEWART GROUP)

Analytical Method for

GEOCHEMICAL GOLD ANALYSIS

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a pre-numbered bag.

The sample is weighed to 10/15/30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

GOLD and PGE ASSAYS

Samples are sorted and dried (if necessary). The samples are crushed through a jaw crusher and cone or rolls crusher to -10 mesh. The sample is split through a Jones riffle until a -250 gram subsample is achieved. The subsample is pulverized in a ring & puck pulverizer to 95% - 140 mesh. The sample is rolled to homogenize.

For gold, a 1/2 or 1.0 assay ton sample size is fire assayed using appropriate fluxes. The resultant dore bead is parted and then digested with aqua regia and then analyzed on a Perkin Elmer AA instrument.

Determinations for Au, Pt and Pd are completed by classical lead-collection fire assay on a 1 assay ton sample (30g). Analysis is by ICP after digestion of the dore bead.

Appropriate standards and repeat sample (Quality Control components) accompany the samples on the data sheet.

Analytical Procedure Assessment Report

MULTI ELEMENT ICP ANALYSIS

Samples are catalogued and dried. Soil samples are screened to obtain a -80 mesh sample. Samples unable to produce adequate -80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and pulverized on a ring mill pulverizer to minus 140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia which contains beryllium which acts as an internal standard. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

BASE METAL ASSAYS (Ag, Cu, Pb, Zn)

Samples are catalogued and dried. Rock samples are 2 stage crushed followed by pulverizing a 250 gram subsample. The subsample is rolled and homogenized and bagged in a pre-numbered bag.

A suitable sample weight is digested with aqua regia. The sample is allowed to cool, bulked up to a suitable volume and analyzed by an atomic absorption instrument, to .01 % detection limit.

Appropriate certified reference materials accompany the samples through the process providing accurate quality control.

Result data is entered along with standards and repeat values and are faxed and/or mailed to the client.

K:Methods/methicp K:methods/methauas